Step |
Hyp |
Ref |
Expression |
1 |
|
cshwrepswhash1.m |
⊢ 𝑀 = { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } |
2 |
|
0ex |
⊢ ∅ ∈ V |
3 |
|
eleq1 |
⊢ ( 𝑊 = ∅ → ( 𝑊 ∈ V ↔ ∅ ∈ V ) ) |
4 |
2 3
|
mpbiri |
⊢ ( 𝑊 = ∅ → 𝑊 ∈ V ) |
5 |
|
hasheq0 |
⊢ ( 𝑊 ∈ V → ( ( ♯ ‘ 𝑊 ) = 0 ↔ 𝑊 = ∅ ) ) |
6 |
5
|
bicomd |
⊢ ( 𝑊 ∈ V → ( 𝑊 = ∅ ↔ ( ♯ ‘ 𝑊 ) = 0 ) ) |
7 |
4 6
|
syl |
⊢ ( 𝑊 = ∅ → ( 𝑊 = ∅ ↔ ( ♯ ‘ 𝑊 ) = 0 ) ) |
8 |
7
|
ibi |
⊢ ( 𝑊 = ∅ → ( ♯ ‘ 𝑊 ) = 0 ) |
9 |
8
|
oveq2d |
⊢ ( 𝑊 = ∅ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 0 ) ) |
10 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
11 |
9 10
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ∅ ) |
12 |
11
|
rexeqdv |
⊢ ( 𝑊 = ∅ → ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ↔ ∃ 𝑛 ∈ ∅ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) ) |
13 |
12
|
rabbidv |
⊢ ( 𝑊 = ∅ → { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } = { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ∅ ( 𝑊 cyclShift 𝑛 ) = 𝑤 } ) |
14 |
|
rex0 |
⊢ ¬ ∃ 𝑛 ∈ ∅ ( 𝑊 cyclShift 𝑛 ) = 𝑤 |
15 |
14
|
a1i |
⊢ ( 𝑊 = ∅ → ¬ ∃ 𝑛 ∈ ∅ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) |
16 |
15
|
ralrimivw |
⊢ ( 𝑊 = ∅ → ∀ 𝑤 ∈ Word 𝑉 ¬ ∃ 𝑛 ∈ ∅ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) |
17 |
|
rabeq0 |
⊢ ( { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ∅ ( 𝑊 cyclShift 𝑛 ) = 𝑤 } = ∅ ↔ ∀ 𝑤 ∈ Word 𝑉 ¬ ∃ 𝑛 ∈ ∅ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) |
18 |
16 17
|
sylibr |
⊢ ( 𝑊 = ∅ → { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ∅ ( 𝑊 cyclShift 𝑛 ) = 𝑤 } = ∅ ) |
19 |
13 18
|
eqtrd |
⊢ ( 𝑊 = ∅ → { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } = ∅ ) |
20 |
1 19
|
eqtrid |
⊢ ( 𝑊 = ∅ → 𝑀 = ∅ ) |
21 |
20
|
fveq2d |
⊢ ( 𝑊 = ∅ → ( ♯ ‘ 𝑀 ) = ( ♯ ‘ ∅ ) ) |
22 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
23 |
21 22
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ( ♯ ‘ 𝑀 ) = 0 ) |