Step |
Hyp |
Ref |
Expression |
1 |
|
cshwshash.0 |
⊢ ( 𝜑 → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ) |
2 |
|
orc |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 = 𝑗 ∨ ( { ( 𝑊 cyclShift 𝑛 ) } ∩ { ( 𝑊 cyclShift 𝑗 ) } ) = ∅ ) ) |
3 |
2
|
a1d |
⊢ ( 𝑛 = 𝑗 → ( ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) ∧ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑛 = 𝑗 ∨ ( { ( 𝑊 cyclShift 𝑛 ) } ∩ { ( 𝑊 cyclShift 𝑗 ) } ) = ∅ ) ) ) |
4 |
|
simprl |
⊢ ( ( 𝑛 ≠ 𝑗 ∧ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) ∧ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) ) |
5 |
|
simprrl |
⊢ ( ( 𝑛 ≠ 𝑗 ∧ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) ∧ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
6 |
|
simprrr |
⊢ ( ( 𝑛 ≠ 𝑗 ∧ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) ∧ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
7 |
|
necom |
⊢ ( 𝑛 ≠ 𝑗 ↔ 𝑗 ≠ 𝑛 ) |
8 |
7
|
biimpi |
⊢ ( 𝑛 ≠ 𝑗 → 𝑗 ≠ 𝑛 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑛 ≠ 𝑗 ∧ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) ∧ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → 𝑗 ≠ 𝑛 ) |
10 |
1
|
cshwshashlem3 |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) → ( ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ≠ 𝑛 ) → ( 𝑊 cyclShift 𝑛 ) ≠ ( 𝑊 cyclShift 𝑗 ) ) ) |
11 |
10
|
imp |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) ∧ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ≠ 𝑛 ) ) → ( 𝑊 cyclShift 𝑛 ) ≠ ( 𝑊 cyclShift 𝑗 ) ) |
12 |
4 5 6 9 11
|
syl13anc |
⊢ ( ( 𝑛 ≠ 𝑗 ∧ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) ∧ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( 𝑊 cyclShift 𝑛 ) ≠ ( 𝑊 cyclShift 𝑗 ) ) |
13 |
|
disjsn2 |
⊢ ( ( 𝑊 cyclShift 𝑛 ) ≠ ( 𝑊 cyclShift 𝑗 ) → ( { ( 𝑊 cyclShift 𝑛 ) } ∩ { ( 𝑊 cyclShift 𝑗 ) } ) = ∅ ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑛 ≠ 𝑗 ∧ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) ∧ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( { ( 𝑊 cyclShift 𝑛 ) } ∩ { ( 𝑊 cyclShift 𝑗 ) } ) = ∅ ) |
15 |
14
|
olcd |
⊢ ( ( 𝑛 ≠ 𝑗 ∧ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) ∧ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( 𝑛 = 𝑗 ∨ ( { ( 𝑊 cyclShift 𝑛 ) } ∩ { ( 𝑊 cyclShift 𝑗 ) } ) = ∅ ) ) |
16 |
15
|
ex |
⊢ ( 𝑛 ≠ 𝑗 → ( ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) ∧ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑛 = 𝑗 ∨ ( { ( 𝑊 cyclShift 𝑛 ) } ∩ { ( 𝑊 cyclShift 𝑗 ) } ) = ∅ ) ) ) |
17 |
3 16
|
pm2.61ine |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) ∧ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑛 = 𝑗 ∨ ( { ( 𝑊 cyclShift 𝑛 ) } ∩ { ( 𝑊 cyclShift 𝑗 ) } ) = ∅ ) ) |
18 |
17
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) → ∀ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑛 = 𝑗 ∨ ( { ( 𝑊 cyclShift 𝑛 ) } ∩ { ( 𝑊 cyclShift 𝑗 ) } ) = ∅ ) ) |
19 |
|
oveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝑊 cyclShift 𝑛 ) = ( 𝑊 cyclShift 𝑗 ) ) |
20 |
19
|
sneqd |
⊢ ( 𝑛 = 𝑗 → { ( 𝑊 cyclShift 𝑛 ) } = { ( 𝑊 cyclShift 𝑗 ) } ) |
21 |
20
|
disjor |
⊢ ( Disj 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊 cyclShift 𝑛 ) } ↔ ∀ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑛 = 𝑗 ∨ ( { ( 𝑊 cyclShift 𝑛 ) } ∩ { ( 𝑊 cyclShift 𝑗 ) } ) = ∅ ) ) |
22 |
18 21
|
sylibr |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ) → Disj 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊 cyclShift 𝑛 ) } ) |