Step |
Hyp |
Ref |
Expression |
1 |
|
cshwrepswhash1.m |
⊢ 𝑀 = { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } |
2 |
1
|
cshwsiun |
⊢ ( 𝑊 ∈ Word 𝑉 → 𝑀 = ∪ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊 cyclShift 𝑛 ) } ) |
3 |
|
ovex |
⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∈ V |
4 |
|
snex |
⊢ { ( 𝑊 cyclShift 𝑛 ) } ∈ V |
5 |
4
|
a1i |
⊢ ( 𝑊 ∈ Word 𝑉 → { ( 𝑊 cyclShift 𝑛 ) } ∈ V ) |
6 |
5
|
ralrimivw |
⊢ ( 𝑊 ∈ Word 𝑉 → ∀ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊 cyclShift 𝑛 ) } ∈ V ) |
7 |
|
iunexg |
⊢ ( ( ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∈ V ∧ ∀ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊 cyclShift 𝑛 ) } ∈ V ) → ∪ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊 cyclShift 𝑛 ) } ∈ V ) |
8 |
3 6 7
|
sylancr |
⊢ ( 𝑊 ∈ Word 𝑉 → ∪ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊 cyclShift 𝑛 ) } ∈ V ) |
9 |
2 8
|
eqeltrd |
⊢ ( 𝑊 ∈ Word 𝑉 → 𝑀 ∈ V ) |