| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cshwrepswhash1.m | 
							⊢ 𝑀  =  { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  | 
						
						
							| 2 | 
							
								1
							 | 
							cshwsiun | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  𝑀  =  ∪  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊  cyclShift  𝑛 ) } )  | 
						
						
							| 3 | 
							
								
							 | 
							ovex | 
							⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∈  V  | 
						
						
							| 4 | 
							
								
							 | 
							snex | 
							⊢ { ( 𝑊  cyclShift  𝑛 ) }  ∈  V  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  { ( 𝑊  cyclShift  𝑛 ) }  ∈  V )  | 
						
						
							| 6 | 
							
								5
							 | 
							ralrimivw | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ∀ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊  cyclShift  𝑛 ) }  ∈  V )  | 
						
						
							| 7 | 
							
								
							 | 
							iunexg | 
							⊢ ( ( ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∈  V  ∧  ∀ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊  cyclShift  𝑛 ) }  ∈  V )  →  ∪  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊  cyclShift  𝑛 ) }  ∈  V )  | 
						
						
							| 8 | 
							
								3 6 7
							 | 
							sylancr | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ∪  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊  cyclShift  𝑛 ) }  ∈  V )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							eqeltrd | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  𝑀  ∈  V )  |