Step |
Hyp |
Ref |
Expression |
1 |
|
df-rab |
⊢ { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } = { 𝑤 ∣ ( 𝑤 ∈ Word 𝑉 ∧ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) } |
2 |
|
r19.42v |
⊢ ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) ) |
3 |
2
|
bicomi |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) ↔ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) ) |
4 |
3
|
abbii |
⊢ { 𝑤 ∣ ( 𝑤 ∈ Word 𝑉 ∧ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) } = { 𝑤 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) } |
5 |
|
df-rex |
⊢ ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) ↔ ∃ 𝑛 ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) ) ) |
6 |
5
|
abbii |
⊢ { 𝑤 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) } = { 𝑤 ∣ ∃ 𝑛 ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) ) } |
7 |
1 4 6
|
3eqtri |
⊢ { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } = { 𝑤 ∣ ∃ 𝑛 ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) ) } |
8 |
|
abid2 |
⊢ { 𝑛 ∣ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) } = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) |
9 |
8
|
ovexi |
⊢ { 𝑛 ∣ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) } ∈ V |
10 |
|
tru |
⊢ ⊤ |
11 |
10 10
|
pm3.2i |
⊢ ( ⊤ ∧ ⊤ ) |
12 |
|
ovexd |
⊢ ( ⊤ → ( 𝑊 cyclShift 𝑛 ) ∈ V ) |
13 |
|
eqtr3 |
⊢ ( ( 𝑤 = ( 𝑊 cyclShift 𝑛 ) ∧ 𝑦 = ( 𝑊 cyclShift 𝑛 ) ) → 𝑤 = 𝑦 ) |
14 |
13
|
ex |
⊢ ( 𝑤 = ( 𝑊 cyclShift 𝑛 ) → ( 𝑦 = ( 𝑊 cyclShift 𝑛 ) → 𝑤 = 𝑦 ) ) |
15 |
14
|
eqcoms |
⊢ ( ( 𝑊 cyclShift 𝑛 ) = 𝑤 → ( 𝑦 = ( 𝑊 cyclShift 𝑛 ) → 𝑤 = 𝑦 ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) → ( 𝑦 = ( 𝑊 cyclShift 𝑛 ) → 𝑤 = 𝑦 ) ) |
17 |
16
|
com12 |
⊢ ( 𝑦 = ( 𝑊 cyclShift 𝑛 ) → ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) → 𝑤 = 𝑦 ) ) |
18 |
17
|
ad2antlr |
⊢ ( ( ( ⊤ ∧ 𝑦 = ( 𝑊 cyclShift 𝑛 ) ) ∧ ⊤ ) → ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) → 𝑤 = 𝑦 ) ) |
19 |
18
|
alrimiv |
⊢ ( ( ( ⊤ ∧ 𝑦 = ( 𝑊 cyclShift 𝑛 ) ) ∧ ⊤ ) → ∀ 𝑤 ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) → 𝑤 = 𝑦 ) ) |
20 |
19
|
ex |
⊢ ( ( ⊤ ∧ 𝑦 = ( 𝑊 cyclShift 𝑛 ) ) → ( ⊤ → ∀ 𝑤 ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) → 𝑤 = 𝑦 ) ) ) |
21 |
12 20
|
spcimedv |
⊢ ( ⊤ → ( ⊤ → ∃ 𝑦 ∀ 𝑤 ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) → 𝑤 = 𝑦 ) ) ) |
22 |
21
|
imp |
⊢ ( ( ⊤ ∧ ⊤ ) → ∃ 𝑦 ∀ 𝑤 ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) → 𝑤 = 𝑦 ) ) |
23 |
11 22
|
mp1i |
⊢ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ∃ 𝑦 ∀ 𝑤 ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) → 𝑤 = 𝑦 ) ) |
24 |
9 23
|
zfrep4 |
⊢ { 𝑤 ∣ ∃ 𝑛 ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) ) } ∈ V |
25 |
7 24
|
eqeltri |
⊢ { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } ∈ V |