Step |
Hyp |
Ref |
Expression |
1 |
|
eqcom |
⊢ ( ( 𝑊 cyclShift 𝑛 ) = 𝑤 ↔ 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) |
2 |
1
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ↔ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) |
3 |
2
|
abbii |
⊢ { 𝑤 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } = { 𝑤 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) } |
4 |
|
ovex |
⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∈ V |
5 |
4
|
abrexex |
⊢ { 𝑤 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) } ∈ V |
6 |
3 5
|
eqeltri |
⊢ { 𝑤 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } ∈ V |
7 |
|
rabssab |
⊢ { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } ⊆ { 𝑤 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } |
8 |
6 7
|
ssexi |
⊢ { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } ∈ V |