Step |
Hyp |
Ref |
Expression |
1 |
|
cshwshash.0 |
⊢ ( 𝜑 → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ) |
2 |
|
df-ne |
⊢ ( ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ↔ ¬ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
3 |
2
|
rexbii |
⊢ ( ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ¬ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
4 |
|
rexnal |
⊢ ( ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ¬ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ↔ ¬ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
5 |
3 4
|
bitri |
⊢ ( ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ↔ ¬ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
6 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → 𝜑 ) |
7 |
|
fzo0ss1 |
⊢ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) |
8 |
|
fzossfz |
⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝑊 ) ) |
9 |
7 8
|
sstri |
⊢ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝑊 ) ) |
10 |
9
|
sseli |
⊢ ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) |
13 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) |
14 |
|
simpr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → ( ♯ ‘ 𝑊 ) ∈ ℙ ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℙ ) |
16 |
|
elfzelz |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℤ ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → 𝐿 ∈ ℤ ) |
18 |
|
cshwsidrepswmod0 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) |
19 |
13 15 17 18
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) |
20 |
19
|
ex |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
21 |
20
|
3imp |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
22 |
|
olc |
⊢ ( 𝐿 = ( ♯ ‘ 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ) |
23 |
22
|
a1d |
⊢ ( 𝐿 = ( ♯ ‘ 𝑊 ) → ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ) ) |
24 |
|
fzofzim |
⊢ ( ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → 𝐿 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
25 |
|
zmodidfzoimp |
⊢ ( 𝐿 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 𝐿 ) |
26 |
|
eqtr2 |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 𝐿 ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ) → 𝐿 = 0 ) |
27 |
26
|
a1d |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 𝐿 ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → 𝐿 = 0 ) ) |
28 |
27
|
ex |
⊢ ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 𝐿 → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → 𝐿 = 0 ) ) ) |
29 |
25 28
|
syl |
⊢ ( 𝐿 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → 𝐿 = 0 ) ) ) |
30 |
24 29
|
syl |
⊢ ( ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → 𝐿 = 0 ) ) ) |
31 |
30
|
expcom |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → 𝐿 = 0 ) ) ) ) |
32 |
31
|
com24 |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) → 𝐿 = 0 ) ) ) ) |
33 |
32
|
impcom |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) → 𝐿 = 0 ) ) ) |
34 |
33
|
3adant3 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) → 𝐿 = 0 ) ) ) |
35 |
34
|
impcom |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) → 𝐿 = 0 ) ) |
36 |
35
|
impcom |
⊢ ( ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) ∧ ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ) → 𝐿 = 0 ) |
37 |
36
|
orcd |
⊢ ( ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) ∧ ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ) |
38 |
37
|
ex |
⊢ ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) → ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ) ) |
39 |
23 38
|
pm2.61ine |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ) |
40 |
39
|
orcd |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
41 |
|
df-3or |
⊢ ( ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ↔ ( ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
42 |
40 41
|
sylibr |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
43 |
42
|
ex |
⊢ ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) |
44 |
|
3mix3 |
⊢ ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
45 |
44
|
a1d |
⊢ ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) |
46 |
43 45
|
jaoi |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) |
47 |
21 46
|
mpcom |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
48 |
1 47
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
49 |
|
3mix1 |
⊢ ( 𝐿 = 0 → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
50 |
49
|
a1d |
⊢ ( 𝐿 = 0 → ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
51 |
|
3mix2 |
⊢ ( 𝐿 = ( ♯ ‘ 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
52 |
51
|
a1d |
⊢ ( 𝐿 = ( ♯ ‘ 𝑊 ) → ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
53 |
|
repswsymballbi |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
54 |
53
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
55 |
1 54
|
syl |
⊢ ( 𝜑 → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
56 |
55
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
57 |
56
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ∧ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
58 |
57
|
3mix3d |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ∧ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
59 |
58
|
expcom |
⊢ ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) → ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
60 |
50 52 59
|
3jaoi |
⊢ ( ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
61 |
48 60
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
62 |
6 11 12 61
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
63 |
|
elfzo1 |
⊢ ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐿 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐿 < ( ♯ ‘ 𝑊 ) ) ) |
64 |
|
nnne0 |
⊢ ( 𝐿 ∈ ℕ → 𝐿 ≠ 0 ) |
65 |
|
df-ne |
⊢ ( 𝐿 ≠ 0 ↔ ¬ 𝐿 = 0 ) |
66 |
|
pm2.21 |
⊢ ( ¬ 𝐿 = 0 → ( 𝐿 = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
67 |
65 66
|
sylbi |
⊢ ( 𝐿 ≠ 0 → ( 𝐿 = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
68 |
64 67
|
syl |
⊢ ( 𝐿 ∈ ℕ → ( 𝐿 = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
69 |
68
|
3ad2ant1 |
⊢ ( ( 𝐿 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐿 < ( ♯ ‘ 𝑊 ) ) → ( 𝐿 = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
70 |
63 69
|
sylbi |
⊢ ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐿 = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
71 |
70
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
72 |
71
|
com12 |
⊢ ( 𝐿 = 0 → ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
73 |
|
nnre |
⊢ ( 𝐿 ∈ ℕ → 𝐿 ∈ ℝ ) |
74 |
|
ltne |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝐿 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ≠ 𝐿 ) |
75 |
73 74
|
sylan |
⊢ ( ( 𝐿 ∈ ℕ ∧ 𝐿 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ≠ 𝐿 ) |
76 |
|
df-ne |
⊢ ( ( ♯ ‘ 𝑊 ) ≠ 𝐿 ↔ ¬ ( ♯ ‘ 𝑊 ) = 𝐿 ) |
77 |
|
eqcom |
⊢ ( 𝐿 = ( ♯ ‘ 𝑊 ) ↔ ( ♯ ‘ 𝑊 ) = 𝐿 ) |
78 |
|
pm2.21 |
⊢ ( ¬ ( ♯ ‘ 𝑊 ) = 𝐿 → ( ( ♯ ‘ 𝑊 ) = 𝐿 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
79 |
77 78
|
syl5bi |
⊢ ( ¬ ( ♯ ‘ 𝑊 ) = 𝐿 → ( 𝐿 = ( ♯ ‘ 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
80 |
76 79
|
sylbi |
⊢ ( ( ♯ ‘ 𝑊 ) ≠ 𝐿 → ( 𝐿 = ( ♯ ‘ 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
81 |
75 80
|
syl |
⊢ ( ( 𝐿 ∈ ℕ ∧ 𝐿 < ( ♯ ‘ 𝑊 ) ) → ( 𝐿 = ( ♯ ‘ 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
82 |
81
|
3adant2 |
⊢ ( ( 𝐿 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐿 < ( ♯ ‘ 𝑊 ) ) → ( 𝐿 = ( ♯ ‘ 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
83 |
63 82
|
sylbi |
⊢ ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐿 = ( ♯ ‘ 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
84 |
83
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = ( ♯ ‘ 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
85 |
84
|
com12 |
⊢ ( 𝐿 = ( ♯ ‘ 𝑊 ) → ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
86 |
|
ax-1 |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) → ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
87 |
72 85 86
|
3jaoi |
⊢ ( ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) → ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
88 |
62 87
|
mpcom |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
89 |
88
|
pm2.24d |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( ¬ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) |
90 |
89
|
exp31 |
⊢ ( 𝜑 → ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ¬ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) ) ) |
91 |
90
|
com34 |
⊢ ( 𝜑 → ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( ¬ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) ) ) |
92 |
91
|
com23 |
⊢ ( 𝜑 → ( ¬ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) → ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) ) ) |
93 |
5 92
|
syl5bi |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) → ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) ) ) |
94 |
93
|
3imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) |
95 |
94
|
com12 |
⊢ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) |
96 |
|
ax-1 |
⊢ ( ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 → ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) |
97 |
95 96
|
pm2.61ine |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) |