| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cshwshash.0 | 
							⊢ ( 𝜑  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							df-ne | 
							⊢ ( ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 )  ↔  ¬  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							rexbii | 
							⊢ ( ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 )  ↔  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ¬  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rexnal | 
							⊢ ( ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ¬  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  ↔  ¬  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							bitri | 
							⊢ ( ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 )  ↔  ¬  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝜑  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  𝜑 )  | 
						
						
							| 7 | 
							
								
							 | 
							fzo0ss1 | 
							⊢ ( 1 ..^ ( ♯ ‘ 𝑊 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fzossfz | 
							⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ⊆  ( 0 ... ( ♯ ‘ 𝑊 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sstri | 
							⊢ ( 1 ..^ ( ♯ ‘ 𝑊 ) )  ⊆  ( 0 ... ( ♯ ‘ 𝑊 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							sseli | 
							⊢ ( 𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝜑  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  | 
						
						
							| 13 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  𝑊  ∈  Word  𝑉 )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( ♯ ‘ 𝑊 )  ∈  ℙ )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℙ )  | 
						
						
							| 16 | 
							
								
							 | 
							elfzelz | 
							⊢ ( 𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  𝐿  ∈  ℤ )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  𝐿  ∈  ℤ )  | 
						
						
							| 18 | 
							
								
							 | 
							cshwsidrepswmod0 | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ  ∧  𝐿  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  →  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) ) )  | 
						
						
							| 19 | 
							
								13 15 17 18
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  →  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ex | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( 𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  →  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							3imp | 
							⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							olc | 
							⊢ ( 𝐿  =  ( ♯ ‘ 𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							a1d | 
							⊢ ( 𝐿  =  ( ♯ ‘ 𝑊 )  →  ( ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fzofzim | 
							⊢ ( ( 𝐿  ≠  ( ♯ ‘ 𝑊 )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  𝐿  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							zmodidfzoimp | 
							⊢ ( 𝐿  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  𝐿 )  | 
						
						
							| 26 | 
							
								
							 | 
							eqtr2 | 
							⊢ ( ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  𝐿  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0 )  →  𝐿  =  0 )  | 
						
						
							| 27 | 
							
								26
							 | 
							a1d | 
							⊢ ( ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  𝐿  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  𝐿  =  0 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							ex | 
							⊢ ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  𝐿  →  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  𝐿  =  0 ) ) )  | 
						
						
							| 29 | 
							
								25 28
							 | 
							syl | 
							⊢ ( 𝐿  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  𝐿  =  0 ) ) )  | 
						
						
							| 30 | 
							
								24 29
							 | 
							syl | 
							⊢ ( ( 𝐿  ≠  ( ♯ ‘ 𝑊 )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  𝐿  =  0 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							expcom | 
							⊢ ( 𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( 𝐿  ≠  ( ♯ ‘ 𝑊 )  →  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  𝐿  =  0 ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							com24 | 
							⊢ ( 𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  →  ( 𝐿  ≠  ( ♯ ‘ 𝑊 )  →  𝐿  =  0 ) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							impcom | 
							⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  →  ( 𝐿  ≠  ( ♯ ‘ 𝑊 )  →  𝐿  =  0 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							3adant3 | 
							⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  →  ( 𝐿  ≠  ( ♯ ‘ 𝑊 )  →  𝐿  =  0 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							impcom | 
							⊢ ( ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ( 𝐿  ≠  ( ♯ ‘ 𝑊 )  →  𝐿  =  0 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							impcom | 
							⊢ ( ( 𝐿  ≠  ( ♯ ‘ 𝑊 )  ∧  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) ) )  →  𝐿  =  0 )  | 
						
						
							| 37 | 
							
								36
							 | 
							orcd | 
							⊢ ( ( 𝐿  ≠  ( ♯ ‘ 𝑊 )  ∧  ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) ) )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							ex | 
							⊢ ( 𝐿  ≠  ( ♯ ‘ 𝑊 )  →  ( ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 39 | 
							
								23 38
							 | 
							pm2.61ine | 
							⊢ ( ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							orcd | 
							⊢ ( ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ( ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 ) )  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							df-3or | 
							⊢ ( ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) )  ↔  ( ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 ) )  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							sylibr | 
							⊢ ( ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							ex | 
							⊢ ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  →  ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							3mix3 | 
							⊢ ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							a1d | 
							⊢ ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  →  ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) ) )  | 
						
						
							| 46 | 
							
								43 45
							 | 
							jaoi | 
							⊢ ( ( ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  =  0  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) ) )  | 
						
						
							| 47 | 
							
								21 46
							 | 
							mpcom | 
							⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 48 | 
							
								1 47
							 | 
							syl3an1 | 
							⊢ ( ( 𝜑  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 49 | 
							
								
							 | 
							3mix1 | 
							⊢ ( 𝐿  =  0  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							a1d | 
							⊢ ( 𝐿  =  0  →  ( ( 𝜑  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							3mix2 | 
							⊢ ( 𝐿  =  ( ♯ ‘ 𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							a1d | 
							⊢ ( 𝐿  =  ( ♯ ‘ 𝑊 )  →  ( ( 𝜑  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							repswsymballbi | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							adantr | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 55 | 
							
								1 54
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							biimpa | 
							⊢ ( ( ( 𝜑  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  ∧  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							3mix3d | 
							⊢ ( ( ( 𝜑  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  ∧  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							expcom | 
							⊢ ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝜑  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) )  | 
						
						
							| 60 | 
							
								50 52 59
							 | 
							3jaoi | 
							⊢ ( ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝜑  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) )  | 
						
						
							| 61 | 
							
								48 60
							 | 
							mpcom | 
							⊢ ( ( 𝜑  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 62 | 
							
								6 11 12 61
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							elfzo1 | 
							⊢ ( 𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( 𝐿  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝐿  <  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							nnne0 | 
							⊢ ( 𝐿  ∈  ℕ  →  𝐿  ≠  0 )  | 
						
						
							| 65 | 
							
								
							 | 
							df-ne | 
							⊢ ( 𝐿  ≠  0  ↔  ¬  𝐿  =  0 )  | 
						
						
							| 66 | 
							
								
							 | 
							pm2.21 | 
							⊢ ( ¬  𝐿  =  0  →  ( 𝐿  =  0  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							sylbi | 
							⊢ ( 𝐿  ≠  0  →  ( 𝐿  =  0  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 68 | 
							
								64 67
							 | 
							syl | 
							⊢ ( 𝐿  ∈  ℕ  →  ( 𝐿  =  0  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐿  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝐿  <  ( ♯ ‘ 𝑊 ) )  →  ( 𝐿  =  0  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 70 | 
							
								63 69
							 | 
							sylbi | 
							⊢ ( 𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝐿  =  0  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝜑  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  0  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							com12 | 
							⊢ ( 𝐿  =  0  →  ( ( ( 𝜑  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							nnre | 
							⊢ ( 𝐿  ∈  ℕ  →  𝐿  ∈  ℝ )  | 
						
						
							| 74 | 
							
								
							 | 
							ltne | 
							⊢ ( ( 𝐿  ∈  ℝ  ∧  𝐿  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ≠  𝐿 )  | 
						
						
							| 75 | 
							
								73 74
							 | 
							sylan | 
							⊢ ( ( 𝐿  ∈  ℕ  ∧  𝐿  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ≠  𝐿 )  | 
						
						
							| 76 | 
							
								
							 | 
							df-ne | 
							⊢ ( ( ♯ ‘ 𝑊 )  ≠  𝐿  ↔  ¬  ( ♯ ‘ 𝑊 )  =  𝐿 )  | 
						
						
							| 77 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝐿  =  ( ♯ ‘ 𝑊 )  ↔  ( ♯ ‘ 𝑊 )  =  𝐿 )  | 
						
						
							| 78 | 
							
								
							 | 
							pm2.21 | 
							⊢ ( ¬  ( ♯ ‘ 𝑊 )  =  𝐿  →  ( ( ♯ ‘ 𝑊 )  =  𝐿  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 79 | 
							
								77 78
							 | 
							biimtrid | 
							⊢ ( ¬  ( ♯ ‘ 𝑊 )  =  𝐿  →  ( 𝐿  =  ( ♯ ‘ 𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 80 | 
							
								76 79
							 | 
							sylbi | 
							⊢ ( ( ♯ ‘ 𝑊 )  ≠  𝐿  →  ( 𝐿  =  ( ♯ ‘ 𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 81 | 
							
								75 80
							 | 
							syl | 
							⊢ ( ( 𝐿  ∈  ℕ  ∧  𝐿  <  ( ♯ ‘ 𝑊 ) )  →  ( 𝐿  =  ( ♯ ‘ 𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							3adant2 | 
							⊢ ( ( 𝐿  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝐿  <  ( ♯ ‘ 𝑊 ) )  →  ( 𝐿  =  ( ♯ ‘ 𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 83 | 
							
								63 82
							 | 
							sylbi | 
							⊢ ( 𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝐿  =  ( ♯ ‘ 𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝜑  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( 𝐿  =  ( ♯ ‘ 𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							com12 | 
							⊢ ( 𝐿  =  ( ♯ ‘ 𝑊 )  →  ( ( ( 𝜑  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							ax-1 | 
							⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  →  ( ( ( 𝜑  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 87 | 
							
								72 85 86
							 | 
							3jaoi | 
							⊢ ( ( 𝐿  =  0  ∨  𝐿  =  ( ♯ ‘ 𝑊 )  ∨  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) )  →  ( ( ( 𝜑  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 88 | 
							
								62 87
							 | 
							mpcom | 
							⊢ ( ( ( 𝜑  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							pm2.24d | 
							⊢ ( ( ( 𝜑  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  ( ¬  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  →  ( 𝑊  cyclShift  𝐿 )  ≠  𝑊 ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							exp31 | 
							⊢ ( 𝜑  →  ( 𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  →  ( ¬  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  →  ( 𝑊  cyclShift  𝐿 )  ≠  𝑊 ) ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							com34 | 
							⊢ ( 𝜑  →  ( 𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ¬  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  →  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  →  ( 𝑊  cyclShift  𝐿 )  ≠  𝑊 ) ) ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							com23 | 
							⊢ ( 𝜑  →  ( ¬  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  →  ( 𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  →  ( 𝑊  cyclShift  𝐿 )  ≠  𝑊 ) ) ) )  | 
						
						
							| 93 | 
							
								5 92
							 | 
							biimtrid | 
							⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 )  →  ( 𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  →  ( 𝑊  cyclShift  𝐿 )  ≠  𝑊 ) ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							3imp | 
							⊢ ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 )  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  →  ( 𝑊  cyclShift  𝐿 )  ≠  𝑊 ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							com12 | 
							⊢ ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  →  ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 )  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝐿 )  ≠  𝑊 ) )  | 
						
						
							| 96 | 
							
								
							 | 
							ax-1 | 
							⊢ ( ( 𝑊  cyclShift  𝐿 )  ≠  𝑊  →  ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 )  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝐿 )  ≠  𝑊 ) )  | 
						
						
							| 97 | 
							
								95 96
							 | 
							pm2.61ine | 
							⊢ ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 )  ∧  𝐿  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝐿 )  ≠  𝑊 )  |