Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → ( ♯ ‘ 𝑊 ) ∈ ℙ ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℙ ) |
3 |
|
simp1 |
⊢ ( ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → 𝐿 ∈ ℤ ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → 𝐿 ∈ ℤ ) |
5 |
|
simpr2 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ) |
6 |
2 4 5
|
3jca |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ) ) |
7 |
6
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ) ) |
8 |
|
simpr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
9 |
|
modprmn0modprm0 |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ∃ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) ) |
10 |
7 8 9
|
sylc |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∃ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
11 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 · 𝐿 ) = ( 𝑗 · 𝐿 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝑖 + ( 𝑘 · 𝐿 ) ) = ( 𝑖 + ( 𝑗 · 𝐿 ) ) ) |
13 |
12
|
fvoveq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝑊 ‘ ( ( 𝑖 + ( 𝑘 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑘 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
15 |
|
simpl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → 𝑊 ∈ Word 𝑉 ) |
16 |
15 3
|
anim12i |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ) |
17 |
16
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) ∧ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ) |
19 |
|
simpr3 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) |
20 |
19
|
anim1i |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) ∧ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
22 |
|
cshweqrep |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑘 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
23 |
18 21 22
|
sylc |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) ∧ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑘 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
24 |
|
elfzonn0 |
⊢ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑗 ∈ ℕ0 ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) ∧ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑗 ∈ ℕ0 ) |
26 |
14 23 25
|
rspcdva |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) ∧ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
27 |
|
fveq2 |
⊢ ( ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 → ( 𝑊 ‘ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 0 ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) → ( 𝑊 ‘ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 0 ) ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) ∧ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 0 ) ) |
30 |
26 29
|
eqtrd |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) ∧ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
31 |
30
|
ex |
⊢ ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
32 |
31
|
rexlimiva |
⊢ ( ∃ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑖 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
33 |
10 32
|
mpcom |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
34 |
33
|
ralrimiva |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
35 |
|
repswsymballbi |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
37 |
34 36
|
mpbird |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) |
38 |
37
|
ex |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → ( ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |