Step |
Hyp |
Ref |
Expression |
1 |
|
orc |
⊢ ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
2 |
1
|
2a1d |
⊢ ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
3 |
|
3simpa |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ) |
4 |
3
|
ad2antlr |
⊢ ( ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ) |
5 |
|
simplr3 |
⊢ ( ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → 𝐿 ∈ ℤ ) |
6 |
|
simpll |
⊢ ( ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ) |
7 |
|
simpr |
⊢ ( ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) |
8 |
|
cshwsidrepsw |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → ( ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
9 |
8
|
imp |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ ( 𝐿 ∈ ℤ ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) |
10 |
4 5 6 7 9
|
syl13anc |
⊢ ( ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) |
11 |
10
|
olcd |
⊢ ( ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
12 |
11
|
exp31 |
⊢ ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) ≠ 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
13 |
2 12
|
pm2.61ine |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) |