Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( 𝑁 − ( ♯ ‘ 𝑊 ) ) = ( 𝑁 − 0 ) ) |
2 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
3 |
2
|
subid1d |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 0 ) = 𝑁 ) |
4 |
3
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑁 − 0 ) = 𝑁 ) |
5 |
1 4
|
sylan9eq |
⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 − ( ♯ ‘ 𝑊 ) ) = 𝑁 ) |
6 |
5
|
eqcomd |
⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → 𝑁 = ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) |
7 |
6
|
oveq2d |
⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) ) |
8 |
7
|
ex |
⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) ) ) |
9 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
10 |
9
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
11 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
12 |
|
elnnne0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ≠ 0 ) ) |
13 |
|
nnrp |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
14 |
12 13
|
sylbir |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ≠ 0 ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
15 |
14
|
ex |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) ≠ 0 → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) ) |
16 |
11 15
|
syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) ≠ 0 → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) ≠ 0 → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) ) |
18 |
17
|
impcom |
⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
19 |
|
modeqmodmin |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑁 − ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
20 |
10 18 19
|
syl2an2 |
⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑁 − ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
21 |
20
|
oveq2d |
⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 cyclShift ( ( 𝑁 − ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
22 |
|
cshwmodn |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
23 |
22
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
24 |
|
simpl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → 𝑊 ∈ Word 𝑉 ) |
25 |
11
|
nn0zd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
26 |
|
zsubcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) → ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) |
27 |
25 26
|
sylan2 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) |
28 |
27
|
ancoms |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) |
29 |
24 28
|
jca |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) ) |
30 |
29
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) ) |
31 |
|
cshwmodn |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) → ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 cyclShift ( ( 𝑁 − ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
32 |
30 31
|
syl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 cyclShift ( ( 𝑁 − ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
33 |
21 23 32
|
3eqtr4d |
⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) ) |
34 |
33
|
ex |
⊢ ( ( ♯ ‘ 𝑊 ) ≠ 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) ) ) |
35 |
8 34
|
pm2.61ine |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) ) |