| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  0  →  ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  =  ( 𝑁  −  0 ) ) | 
						
							| 2 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 3 | 2 | subid1d | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  −  0 )  =  𝑁 ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  −  0 )  =  𝑁 ) | 
						
							| 5 | 1 4 | sylan9eq | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  0  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  =  𝑁 ) | 
						
							| 6 | 5 | eqcomd | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  0  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  𝑁  =  ( 𝑁  −  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  0  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  −  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 8 | 7 | ex | ⊢ ( ( ♯ ‘ 𝑊 )  =  0  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  −  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 9 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  𝑁  ∈  ℝ ) | 
						
							| 11 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 12 |  | elnnne0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ≠  0 ) ) | 
						
							| 13 |  | nnrp | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ♯ ‘ 𝑊 )  ∈  ℝ+ ) | 
						
							| 14 | 12 13 | sylbir | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ≠  0 )  →  ( ♯ ‘ 𝑊 )  ∈  ℝ+ ) | 
						
							| 15 | 14 | ex | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑊 )  ≠  0  →  ( ♯ ‘ 𝑊 )  ∈  ℝ+ ) ) | 
						
							| 16 | 11 15 | syl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑊 )  ≠  0  →  ( ♯ ‘ 𝑊 )  ∈  ℝ+ ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ( ♯ ‘ 𝑊 )  ≠  0  →  ( ♯ ‘ 𝑊 )  ∈  ℝ+ ) ) | 
						
							| 18 | 17 | impcom | ⊢ ( ( ( ♯ ‘ 𝑊 )  ≠  0  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℝ+ ) | 
						
							| 19 |  | modeqmodmin | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℝ+ )  →  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 20 | 10 18 19 | syl2an2 | ⊢ ( ( ( ♯ ‘ 𝑊 )  ≠  0  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑊 )  ≠  0  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊  cyclShift  ( ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 22 |  | cshwmodn | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( ♯ ‘ 𝑊 )  ≠  0  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 24 |  | simpl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 25 | 11 | nn0zd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 26 |  | zsubcl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℤ )  →  ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  ∈  ℤ ) | 
						
							| 27 | 25 26 | sylan2 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑊  ∈  Word  𝑉 )  →  ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  ∈  ℤ ) | 
						
							| 28 | 27 | ancoms | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  ∈  ℤ ) | 
						
							| 29 | 24 28 | jca | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  ∈  ℤ ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( ♯ ‘ 𝑊 )  ≠  0  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  ∈  ℤ ) ) | 
						
							| 31 |  | cshwmodn | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  ∈  ℤ )  →  ( 𝑊  cyclShift  ( 𝑁  −  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊  cyclShift  ( ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( ♯ ‘ 𝑊 )  ≠  0  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑊  cyclShift  ( 𝑁  −  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊  cyclShift  ( ( 𝑁  −  ( ♯ ‘ 𝑊 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 33 | 21 23 32 | 3eqtr4d | ⊢ ( ( ( ♯ ‘ 𝑊 )  ≠  0  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  −  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 34 | 33 | ex | ⊢ ( ( ♯ ‘ 𝑊 )  ≠  0  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  −  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 35 | 8 34 | pm2.61ine | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  −  ( ♯ ‘ 𝑊 ) ) ) ) |