| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csmdsym.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
csmdsym.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
| 4 |
3
|
sseq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ↔ ( 𝐵 ∩ 𝐴 ) ⊆ 𝑥 ) |
| 5 |
4
|
biimpri |
⊢ ( ( 𝐵 ∩ 𝐴 ) ⊆ 𝑥 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ) |
| 6 |
|
chjcom |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝑥 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝑥 ) ) |
| 7 |
2 6
|
mpan2 |
⊢ ( 𝑥 ∈ Cℋ → ( 𝑥 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝑥 ) ) |
| 8 |
7
|
ineq1d |
⊢ ( 𝑥 ∈ Cℋ → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) = ( ( 𝐵 ∨ℋ 𝑥 ) ∩ 𝐴 ) ) |
| 9 |
|
incom |
⊢ ( ( 𝐵 ∨ℋ 𝑥 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝑥 ) ) |
| 10 |
8 9
|
eqtrdi |
⊢ ( 𝑥 ∈ Cℋ → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝑥 ) ) ) |
| 11 |
10
|
ad2antlr |
⊢ ( ( ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) ∧ 𝑥 ∈ Cℋ ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝑥 ) ) ) |
| 12 |
2
|
a1i |
⊢ ( 𝑥 ∈ Cℋ → 𝐵 ∈ Cℋ ) |
| 13 |
|
id |
⊢ ( 𝑥 ∈ Cℋ → 𝑥 ∈ Cℋ ) |
| 14 |
1
|
a1i |
⊢ ( 𝑥 ∈ Cℋ → 𝐴 ∈ Cℋ ) |
| 15 |
12 13 14
|
3jca |
⊢ ( 𝑥 ∈ Cℋ → ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ) |
| 16 |
15
|
ad2antlr |
⊢ ( ( ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) ∧ 𝑥 ∈ Cℋ ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ) |
| 17 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
| 18 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
| 19 |
17 18
|
pm3.2i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) |
| 20 |
|
sseq2 |
⊢ ( 𝑥 = if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) → ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ↔ ( 𝐴 ∩ 𝐵 ) ⊆ if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) ) ) |
| 21 |
|
sseq1 |
⊢ ( 𝑥 = if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) → ( 𝑥 ⊆ 𝐴 ↔ if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) ⊆ 𝐴 ) ) |
| 22 |
20 21
|
anbi12d |
⊢ ( 𝑥 = if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ⊆ if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) ∧ if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) ⊆ 𝐴 ) ) ) |
| 23 |
22
|
3anbi2d |
⊢ ( 𝑥 = if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) → ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ) ↔ ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) ∧ if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ) ) ) |
| 24 |
|
breq1 |
⊢ ( 𝑥 = if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) → ( 𝑥 𝑀ℋ 𝐵 ↔ if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) 𝑀ℋ 𝐵 ) ) |
| 25 |
23 24
|
imbi12d |
⊢ ( 𝑥 = if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) → ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ) → 𝑥 𝑀ℋ 𝐵 ) ↔ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) ∧ if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ) → if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) 𝑀ℋ 𝐵 ) ) ) |
| 26 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
| 27 |
26
|
elimel |
⊢ if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) ∈ Cℋ |
| 28 |
1 2 27 2
|
mdslmd4i |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) ∧ if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ) → if ( 𝑥 ∈ Cℋ , 𝑥 , 0ℋ ) 𝑀ℋ 𝐵 ) |
| 29 |
25 28
|
dedth |
⊢ ( 𝑥 ∈ Cℋ → ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ) → 𝑥 𝑀ℋ 𝐵 ) ) |
| 30 |
29
|
com12 |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ) → ( 𝑥 ∈ Cℋ → 𝑥 𝑀ℋ 𝐵 ) ) |
| 31 |
19 30
|
mp3an3 |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → ( 𝑥 ∈ Cℋ → 𝑥 𝑀ℋ 𝐵 ) ) |
| 32 |
31
|
imp |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ Cℋ ) → 𝑥 𝑀ℋ 𝐵 ) |
| 33 |
32
|
an32s |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝑥 ∈ Cℋ ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝑥 𝑀ℋ 𝐵 ) |
| 34 |
33
|
adantlll |
⊢ ( ( ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) ∧ 𝑥 ∈ Cℋ ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝑥 𝑀ℋ 𝐵 ) |
| 35 |
|
breq1 |
⊢ ( 𝑐 = 𝑥 → ( 𝑐 𝑀ℋ 𝐵 ↔ 𝑥 𝑀ℋ 𝐵 ) ) |
| 36 |
|
breq2 |
⊢ ( 𝑐 = 𝑥 → ( 𝐵 𝑀ℋ* 𝑐 ↔ 𝐵 𝑀ℋ* 𝑥 ) ) |
| 37 |
35 36
|
imbi12d |
⊢ ( 𝑐 = 𝑥 → ( ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ↔ ( 𝑥 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑥 ) ) ) |
| 38 |
37
|
rspccva |
⊢ ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝑥 ∈ Cℋ ) → ( 𝑥 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑥 ) ) |
| 39 |
38
|
adantlr |
⊢ ( ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) ∧ 𝑥 ∈ Cℋ ) → ( 𝑥 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑥 ) ) |
| 40 |
39
|
adantr |
⊢ ( ( ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) ∧ 𝑥 ∈ Cℋ ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → ( 𝑥 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑥 ) ) |
| 41 |
34 40
|
mpd |
⊢ ( ( ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) ∧ 𝑥 ∈ Cℋ ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝐵 𝑀ℋ* 𝑥 ) |
| 42 |
|
simprr |
⊢ ( ( ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) ∧ 𝑥 ∈ Cℋ ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝑥 ⊆ 𝐴 ) |
| 43 |
|
dmdi |
⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 𝑀ℋ* 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ 𝑥 ) = ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝑥 ) ) ) |
| 44 |
16 41 42 43
|
syl12anc |
⊢ ( ( ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) ∧ 𝑥 ∈ Cℋ ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ 𝑥 ) = ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝑥 ) ) ) |
| 45 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 46 |
|
chjcom |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ 𝑥 ) = ( 𝑥 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) |
| 47 |
45 46
|
mpan |
⊢ ( 𝑥 ∈ Cℋ → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ 𝑥 ) = ( 𝑥 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) |
| 48 |
3
|
oveq2i |
⊢ ( 𝑥 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) = ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) |
| 49 |
47 48
|
eqtrdi |
⊢ ( 𝑥 ∈ Cℋ → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ 𝑥 ) = ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) |
| 50 |
49
|
ad2antlr |
⊢ ( ( ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) ∧ 𝑥 ∈ Cℋ ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ 𝑥 ) = ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) |
| 51 |
11 44 50
|
3eqtr2d |
⊢ ( ( ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) ∧ 𝑥 ∈ Cℋ ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) = ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) |
| 52 |
51
|
ex |
⊢ ( ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) ∧ 𝑥 ∈ Cℋ ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) = ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) ) |
| 53 |
5 52
|
sylani |
⊢ ( ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) ∧ 𝑥 ∈ Cℋ ) → ( ( ( 𝐵 ∩ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) = ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) ) |
| 54 |
53
|
ralrimiva |
⊢ ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) → ∀ 𝑥 ∈ Cℋ ( ( ( 𝐵 ∩ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) = ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) ) |
| 55 |
2 1
|
mdsl2bi |
⊢ ( 𝐵 𝑀ℋ 𝐴 ↔ ∀ 𝑥 ∈ Cℋ ( ( ( 𝐵 ∩ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) = ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) ) |
| 56 |
54 55
|
sylibr |
⊢ ( ( ∀ 𝑐 ∈ Cℋ ( 𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐 ) ∧ 𝐴 𝑀ℋ 𝐵 ) → 𝐵 𝑀ℋ 𝐴 ) |