Metamath Proof Explorer


Theorem csmdsymi

Description: Cross-symmetry implies M-symmetry. Theorem 1.9.1 of MaedaMaeda p. 3. (Contributed by NM, 24-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypotheses csmdsym.1 𝐴C
csmdsym.2 𝐵C
Assertion csmdsymi ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) → 𝐵 𝑀 𝐴 )

Proof

Step Hyp Ref Expression
1 csmdsym.1 𝐴C
2 csmdsym.2 𝐵C
3 incom ( 𝐴𝐵 ) = ( 𝐵𝐴 )
4 3 sseq1i ( ( 𝐴𝐵 ) ⊆ 𝑥 ↔ ( 𝐵𝐴 ) ⊆ 𝑥 )
5 4 biimpri ( ( 𝐵𝐴 ) ⊆ 𝑥 → ( 𝐴𝐵 ) ⊆ 𝑥 )
6 chjcom ( ( 𝑥C𝐵C ) → ( 𝑥 𝐵 ) = ( 𝐵 𝑥 ) )
7 2 6 mpan2 ( 𝑥C → ( 𝑥 𝐵 ) = ( 𝐵 𝑥 ) )
8 7 ineq1d ( 𝑥C → ( ( 𝑥 𝐵 ) ∩ 𝐴 ) = ( ( 𝐵 𝑥 ) ∩ 𝐴 ) )
9 incom ( ( 𝐵 𝑥 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( 𝐵 𝑥 ) )
10 8 9 eqtrdi ( 𝑥C → ( ( 𝑥 𝐵 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( 𝐵 𝑥 ) ) )
11 10 ad2antlr ( ( ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) ∧ 𝑥C ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ) → ( ( 𝑥 𝐵 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( 𝐵 𝑥 ) ) )
12 2 a1i ( 𝑥C𝐵C )
13 id ( 𝑥C𝑥C )
14 1 a1i ( 𝑥C𝐴C )
15 12 13 14 3jca ( 𝑥C → ( 𝐵C𝑥C𝐴C ) )
16 15 ad2antlr ( ( ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) ∧ 𝑥C ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ) → ( 𝐵C𝑥C𝐴C ) )
17 inss2 ( 𝐴𝐵 ) ⊆ 𝐵
18 ssid 𝐵𝐵
19 17 18 pm3.2i ( ( 𝐴𝐵 ) ⊆ 𝐵𝐵𝐵 )
20 sseq2 ( 𝑥 = if ( 𝑥C , 𝑥 , 0 ) → ( ( 𝐴𝐵 ) ⊆ 𝑥 ↔ ( 𝐴𝐵 ) ⊆ if ( 𝑥C , 𝑥 , 0 ) ) )
21 sseq1 ( 𝑥 = if ( 𝑥C , 𝑥 , 0 ) → ( 𝑥𝐴 ↔ if ( 𝑥C , 𝑥 , 0 ) ⊆ 𝐴 ) )
22 20 21 anbi12d ( 𝑥 = if ( 𝑥C , 𝑥 , 0 ) → ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ↔ ( ( 𝐴𝐵 ) ⊆ if ( 𝑥C , 𝑥 , 0 ) ∧ if ( 𝑥C , 𝑥 , 0 ) ⊆ 𝐴 ) ) )
23 22 3anbi2d ( 𝑥 = if ( 𝑥C , 𝑥 , 0 ) → ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐵𝐵𝐵 ) ) ↔ ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ if ( 𝑥C , 𝑥 , 0 ) ∧ if ( 𝑥C , 𝑥 , 0 ) ⊆ 𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐵𝐵𝐵 ) ) ) )
24 breq1 ( 𝑥 = if ( 𝑥C , 𝑥 , 0 ) → ( 𝑥 𝑀 𝐵 ↔ if ( 𝑥C , 𝑥 , 0 ) 𝑀 𝐵 ) )
25 23 24 imbi12d ( 𝑥 = if ( 𝑥C , 𝑥 , 0 ) → ( ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐵𝐵𝐵 ) ) → 𝑥 𝑀 𝐵 ) ↔ ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ if ( 𝑥C , 𝑥 , 0 ) ∧ if ( 𝑥C , 𝑥 , 0 ) ⊆ 𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐵𝐵𝐵 ) ) → if ( 𝑥C , 𝑥 , 0 ) 𝑀 𝐵 ) ) )
26 h0elch 0C
27 26 elimel if ( 𝑥C , 𝑥 , 0 ) ∈ C
28 1 2 27 2 mdslmd4i ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ if ( 𝑥C , 𝑥 , 0 ) ∧ if ( 𝑥C , 𝑥 , 0 ) ⊆ 𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐵𝐵𝐵 ) ) → if ( 𝑥C , 𝑥 , 0 ) 𝑀 𝐵 )
29 25 28 dedth ( 𝑥C → ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐵𝐵𝐵 ) ) → 𝑥 𝑀 𝐵 ) )
30 29 com12 ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐵𝐵𝐵 ) ) → ( 𝑥C𝑥 𝑀 𝐵 ) )
31 19 30 mp3an3 ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ) → ( 𝑥C𝑥 𝑀 𝐵 ) )
32 31 imp ( ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ) ∧ 𝑥C ) → 𝑥 𝑀 𝐵 )
33 32 an32s ( ( ( 𝐴 𝑀 𝐵𝑥C ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ) → 𝑥 𝑀 𝐵 )
34 33 adantlll ( ( ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) ∧ 𝑥C ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ) → 𝑥 𝑀 𝐵 )
35 breq1 ( 𝑐 = 𝑥 → ( 𝑐 𝑀 𝐵𝑥 𝑀 𝐵 ) )
36 breq2 ( 𝑐 = 𝑥 → ( 𝐵 𝑀* 𝑐𝐵 𝑀* 𝑥 ) )
37 35 36 imbi12d ( 𝑐 = 𝑥 → ( ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ↔ ( 𝑥 𝑀 𝐵𝐵 𝑀* 𝑥 ) ) )
38 37 rspccva ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝑥C ) → ( 𝑥 𝑀 𝐵𝐵 𝑀* 𝑥 ) )
39 38 adantlr ( ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) ∧ 𝑥C ) → ( 𝑥 𝑀 𝐵𝐵 𝑀* 𝑥 ) )
40 39 adantr ( ( ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) ∧ 𝑥C ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ) → ( 𝑥 𝑀 𝐵𝐵 𝑀* 𝑥 ) )
41 34 40 mpd ( ( ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) ∧ 𝑥C ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ) → 𝐵 𝑀* 𝑥 )
42 simprr ( ( ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) ∧ 𝑥C ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ) → 𝑥𝐴 )
43 dmdi ( ( ( 𝐵C𝑥C𝐴C ) ∧ ( 𝐵 𝑀* 𝑥𝑥𝐴 ) ) → ( ( 𝐴𝐵 ) ∨ 𝑥 ) = ( 𝐴 ∩ ( 𝐵 𝑥 ) ) )
44 16 41 42 43 syl12anc ( ( ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) ∧ 𝑥C ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ) → ( ( 𝐴𝐵 ) ∨ 𝑥 ) = ( 𝐴 ∩ ( 𝐵 𝑥 ) ) )
45 1 2 chincli ( 𝐴𝐵 ) ∈ C
46 chjcom ( ( ( 𝐴𝐵 ) ∈ C𝑥C ) → ( ( 𝐴𝐵 ) ∨ 𝑥 ) = ( 𝑥 ( 𝐴𝐵 ) ) )
47 45 46 mpan ( 𝑥C → ( ( 𝐴𝐵 ) ∨ 𝑥 ) = ( 𝑥 ( 𝐴𝐵 ) ) )
48 3 oveq2i ( 𝑥 ( 𝐴𝐵 ) ) = ( 𝑥 ( 𝐵𝐴 ) )
49 47 48 eqtrdi ( 𝑥C → ( ( 𝐴𝐵 ) ∨ 𝑥 ) = ( 𝑥 ( 𝐵𝐴 ) ) )
50 49 ad2antlr ( ( ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) ∧ 𝑥C ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ) → ( ( 𝐴𝐵 ) ∨ 𝑥 ) = ( 𝑥 ( 𝐵𝐴 ) ) )
51 11 44 50 3eqtr2d ( ( ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) ∧ 𝑥C ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) ) → ( ( 𝑥 𝐵 ) ∩ 𝐴 ) = ( 𝑥 ( 𝐵𝐴 ) ) )
52 51 ex ( ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) ∧ 𝑥C ) → ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐴 ) → ( ( 𝑥 𝐵 ) ∩ 𝐴 ) = ( 𝑥 ( 𝐵𝐴 ) ) ) )
53 5 52 sylani ( ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) ∧ 𝑥C ) → ( ( ( 𝐵𝐴 ) ⊆ 𝑥𝑥𝐴 ) → ( ( 𝑥 𝐵 ) ∩ 𝐴 ) = ( 𝑥 ( 𝐵𝐴 ) ) ) )
54 53 ralrimiva ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) → ∀ 𝑥C ( ( ( 𝐵𝐴 ) ⊆ 𝑥𝑥𝐴 ) → ( ( 𝑥 𝐵 ) ∩ 𝐴 ) = ( 𝑥 ( 𝐵𝐴 ) ) ) )
55 2 1 mdsl2bi ( 𝐵 𝑀 𝐴 ↔ ∀ 𝑥C ( ( ( 𝐵𝐴 ) ⊆ 𝑥𝑥𝐴 ) → ( ( 𝑥 𝐵 ) ∩ 𝐴 ) = ( 𝑥 ( 𝐵𝐴 ) ) ) )
56 54 55 sylibr ( ( ∀ 𝑐C ( 𝑐 𝑀 𝐵𝐵 𝑀* 𝑐 ) ∧ 𝐴 𝑀 𝐵 ) → 𝐵 𝑀 𝐴 )