Metamath Proof Explorer


Theorem csrgbinom

Description: The binomial theorem for commutative semirings. (Contributed by AV, 24-Aug-2019)

Ref Expression
Hypotheses srgbinom.s 𝑆 = ( Base ‘ 𝑅 )
srgbinom.m × = ( .r𝑅 )
srgbinom.t · = ( .g𝑅 )
srgbinom.a + = ( +g𝑅 )
srgbinom.g 𝐺 = ( mulGrp ‘ 𝑅 )
srgbinom.e = ( .g𝐺 )
Assertion csrgbinom ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ) → ( 𝑁 ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁𝑘 ) 𝐴 ) × ( 𝑘 𝐵 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 srgbinom.s 𝑆 = ( Base ‘ 𝑅 )
2 srgbinom.m × = ( .r𝑅 )
3 srgbinom.t · = ( .g𝑅 )
4 srgbinom.a + = ( +g𝑅 )
5 srgbinom.g 𝐺 = ( mulGrp ‘ 𝑅 )
6 srgbinom.e = ( .g𝐺 )
7 3simpb ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) )
8 7 adantr ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ) → ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) )
9 simprl ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ) → 𝐴𝑆 )
10 simprr ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ) → 𝐵𝑆 )
11 simpl2 ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ) → 𝐺 ∈ CMnd )
12 5 1 mgpbas 𝑆 = ( Base ‘ 𝐺 )
13 5 2 mgpplusg × = ( +g𝐺 )
14 12 13 cmncom ( ( 𝐺 ∈ CMnd ∧ 𝐴𝑆𝐵𝑆 ) → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) )
15 11 9 10 14 syl3anc ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ) → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) )
16 1 2 3 4 5 6 srgbinom ( ( ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴𝑆𝐵𝑆 ∧ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) ) → ( 𝑁 ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁𝑘 ) 𝐴 ) × ( 𝑘 𝐵 ) ) ) ) ) )
17 8 9 10 15 16 syl13anc ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ) → ( 𝑁 ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁𝑘 ) 𝐴 ) × ( 𝑘 𝐵 ) ) ) ) ) )