Step |
Hyp |
Ref |
Expression |
1 |
|
srgbinom.s |
⊢ 𝑆 = ( Base ‘ 𝑅 ) |
2 |
|
srgbinom.m |
⊢ × = ( .r ‘ 𝑅 ) |
3 |
|
srgbinom.t |
⊢ · = ( .g ‘ 𝑅 ) |
4 |
|
srgbinom.a |
⊢ + = ( +g ‘ 𝑅 ) |
5 |
|
srgbinom.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
6 |
|
srgbinom.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
7 |
|
3simpb |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) ) |
9 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐴 ∈ 𝑆 ) |
10 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐵 ∈ 𝑆 ) |
11 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐺 ∈ CMnd ) |
12 |
5 1
|
mgpbas |
⊢ 𝑆 = ( Base ‘ 𝐺 ) |
13 |
5 2
|
mgpplusg |
⊢ × = ( +g ‘ 𝐺 ) |
14 |
12 13
|
cmncom |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) |
15 |
11 9 10 14
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) |
16 |
1 2 3 4 5 6
|
srgbinom |
⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) ) → ( 𝑁 ↑ ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝐵 ) ) ) ) ) ) |
17 |
8 9 10 15 16
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝑁 ↑ ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝐵 ) ) ) ) ) ) |