Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | css0.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
css0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
Assertion | css0 | ⊢ ( 𝑊 ∈ PreHil → { 0 } ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | css0.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
2 | css0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
3 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
4 | eqid | ⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) | |
5 | 3 4 2 | ocv1 | ⊢ ( 𝑊 ∈ PreHil → ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) = { 0 } ) |
6 | ssid | ⊢ ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝑊 ) | |
7 | 3 1 4 | ocvcss | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝑊 ) ) → ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ∈ 𝐶 ) |
8 | 6 7 | mpan2 | ⊢ ( 𝑊 ∈ PreHil → ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ∈ 𝐶 ) |
9 | 5 8 | eqeltrrd | ⊢ ( 𝑊 ∈ PreHil → { 0 } ∈ 𝐶 ) |