Metamath Proof Explorer


Theorem css0

Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses css0.c 𝐶 = ( ClSubSp ‘ 𝑊 )
css0.z 0 = ( 0g𝑊 )
Assertion css0 ( 𝑊 ∈ PreHil → { 0 } ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 css0.c 𝐶 = ( ClSubSp ‘ 𝑊 )
2 css0.z 0 = ( 0g𝑊 )
3 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
4 eqid ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 )
5 3 4 2 ocv1 ( 𝑊 ∈ PreHil → ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) = { 0 } )
6 ssid ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝑊 )
7 3 1 4 ocvcss ( ( 𝑊 ∈ PreHil ∧ ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝑊 ) ) → ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ∈ 𝐶 )
8 6 7 mpan2 ( 𝑊 ∈ PreHil → ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ∈ 𝐶 )
9 5 8 eqeltrrd ( 𝑊 ∈ PreHil → { 0 } ∈ 𝐶 )