Metamath Proof Explorer


Theorem css1

Description: The whole space is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses css1.v 𝑉 = ( Base ‘ 𝑊 )
css1.c 𝐶 = ( ClSubSp ‘ 𝑊 )
Assertion css1 ( 𝑊 ∈ PreHil → 𝑉𝐶 )

Proof

Step Hyp Ref Expression
1 css1.v 𝑉 = ( Base ‘ 𝑊 )
2 css1.c 𝐶 = ( ClSubSp ‘ 𝑊 )
3 eqid ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 )
4 1 3 ocv0 ( ( ocv ‘ 𝑊 ) ‘ ∅ ) = 𝑉
5 0ss ∅ ⊆ 𝑉
6 1 2 3 ocvcss ( ( 𝑊 ∈ PreHil ∧ ∅ ⊆ 𝑉 ) → ( ( ocv ‘ 𝑊 ) ‘ ∅ ) ∈ 𝐶 )
7 5 6 mpan2 ( 𝑊 ∈ PreHil → ( ( ocv ‘ 𝑊 ) ‘ ∅ ) ∈ 𝐶 )
8 4 7 eqeltrrid ( 𝑊 ∈ PreHil → 𝑉𝐶 )