Description: The whole space is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | css1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
css1.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
Assertion | css1 | ⊢ ( 𝑊 ∈ PreHil → 𝑉 ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | css1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
2 | css1.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
3 | eqid | ⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) | |
4 | 1 3 | ocv0 | ⊢ ( ( ocv ‘ 𝑊 ) ‘ ∅ ) = 𝑉 |
5 | 0ss | ⊢ ∅ ⊆ 𝑉 | |
6 | 1 2 3 | ocvcss | ⊢ ( ( 𝑊 ∈ PreHil ∧ ∅ ⊆ 𝑉 ) → ( ( ocv ‘ 𝑊 ) ‘ ∅ ) ∈ 𝐶 ) |
7 | 5 6 | mpan2 | ⊢ ( 𝑊 ∈ PreHil → ( ( ocv ‘ 𝑊 ) ‘ ∅ ) ∈ 𝐶 ) |
8 | 4 7 | eqeltrrid | ⊢ ( 𝑊 ∈ PreHil → 𝑉 ∈ 𝐶 ) |