| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cssbn.x | ⊢ 𝑋  =  ( 𝑊  ↾s  𝑈 ) | 
						
							| 2 |  | cssbn.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | cssbn.d | ⊢ 𝐷  =  ( ( dist ‘ 𝑊 )  ↾  ( 𝑈  ×  𝑈 ) ) | 
						
							| 4 |  | simpl1 | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  →  𝑊  ∈  NrmVec ) | 
						
							| 5 |  | simpl2 | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  →  ( Scalar ‘ 𝑊 )  ∈  CMetSp ) | 
						
							| 6 |  | nvcnlm | ⊢ ( 𝑊  ∈  NrmVec  →  𝑊  ∈  NrmMod ) | 
						
							| 7 |  | nlmngp | ⊢ ( 𝑊  ∈  NrmMod  →  𝑊  ∈  NrmGrp ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑊  ∈  NrmVec  →  𝑊  ∈  NrmGrp ) | 
						
							| 9 |  | nvclmod | ⊢ ( 𝑊  ∈  NrmVec  →  𝑊  ∈  LMod ) | 
						
							| 10 | 2 | lsssubg | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 11 | 9 10 | sylan | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 12 | 1 | subgngp | ⊢ ( ( 𝑊  ∈  NrmGrp  ∧  𝑈  ∈  ( SubGrp ‘ 𝑊 ) )  →  𝑋  ∈  NrmGrp ) | 
						
							| 13 | 8 11 12 | syl2an2r | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  NrmGrp ) | 
						
							| 14 | 13 | 3adant2 | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  NrmGrp ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  →  𝑋  ∈  NrmGrp ) | 
						
							| 16 |  | ngpms | ⊢ ( 𝑋  ∈  NrmGrp  →  𝑋  ∈  MetSp ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  →  𝑋  ∈  MetSp ) | 
						
							| 18 |  | eqid | ⊢ ( dist ‘ 𝑊 )  =  ( dist ‘ 𝑊 ) | 
						
							| 19 | 1 18 | ressds | ⊢ ( 𝑈  ∈  𝑆  →  ( dist ‘ 𝑊 )  =  ( dist ‘ 𝑋 ) ) | 
						
							| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  →  ( dist ‘ 𝑊 )  =  ( dist ‘ 𝑋 ) ) | 
						
							| 21 | 11 | 3adant2 | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 22 | 1 | subgbas | ⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝑊 )  →  𝑈  =  ( Base ‘ 𝑋 ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  →  𝑈  =  ( Base ‘ 𝑋 ) ) | 
						
							| 24 | 23 | sqxpeqd | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  →  ( 𝑈  ×  𝑈 )  =  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ) | 
						
							| 25 | 20 24 | reseq12d | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  →  ( ( dist ‘ 𝑊 )  ↾  ( 𝑈  ×  𝑈 ) )  =  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ) ) | 
						
							| 26 | 3 25 | eqtrid | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  →  𝐷  =  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ) ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  →  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  =  𝐷 ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  →  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  =  𝐷 ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ 𝑋 )  =  ( Base ‘ 𝑋 ) | 
						
							| 30 |  | eqid | ⊢ ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  =  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ) | 
						
							| 31 | 29 30 | ngpmet | ⊢ ( 𝑋  ∈  NrmGrp  →  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  ∈  ( Met ‘ ( Base ‘ 𝑋 ) ) ) | 
						
							| 32 | 14 31 | syl | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  →  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  ∈  ( Met ‘ ( Base ‘ 𝑋 ) ) ) | 
						
							| 33 | 26 32 | eqeltrd | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  →  𝐷  ∈  ( Met ‘ ( Base ‘ 𝑋 ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  →  𝐷  ∈  ( Met ‘ ( Base ‘ 𝑋 ) ) ) | 
						
							| 35 |  | simpr | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  →  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) | 
						
							| 36 |  | eqid | ⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 37 | 36 | iscmet2 | ⊢ ( 𝐷  ∈  ( CMet ‘ ( Base ‘ 𝑋 ) )  ↔  ( 𝐷  ∈  ( Met ‘ ( Base ‘ 𝑋 ) )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) ) | 
						
							| 38 | 34 35 37 | sylanbrc | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  →  𝐷  ∈  ( CMet ‘ ( Base ‘ 𝑋 ) ) ) | 
						
							| 39 | 28 38 | eqeltrd | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  →  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑋 ) ) ) | 
						
							| 40 | 29 30 | iscms | ⊢ ( 𝑋  ∈  CMetSp  ↔  ( 𝑋  ∈  MetSp  ∧  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑋 ) ) ) ) | 
						
							| 41 | 17 39 40 | sylanbrc | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  →  𝑋  ∈  CMetSp ) | 
						
							| 42 |  | simpl3 | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  →  𝑈  ∈  𝑆 ) | 
						
							| 43 | 1 2 | cmslssbn | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp )  ∧  ( 𝑋  ∈  CMetSp  ∧  𝑈  ∈  𝑆 ) )  →  𝑋  ∈  Ban ) | 
						
							| 44 | 4 5 41 42 43 | syl22anc | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  ∧  ( Cau ‘ 𝐷 )  ⊆  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  →  𝑋  ∈  Ban ) |