| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cssbn.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
| 2 |
|
cssbn.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
cssbn.d |
⊢ 𝐷 = ( ( dist ‘ 𝑊 ) ↾ ( 𝑈 × 𝑈 ) ) |
| 4 |
|
csschl.c |
⊢ ( Scalar ‘ 𝑊 ) = ℂfld |
| 5 |
|
cphnvc |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑊 ∈ NrmVec ) |
| 7 |
|
cncms |
⊢ ℂfld ∈ CMetSp |
| 8 |
|
eleq1 |
⊢ ( ( Scalar ‘ 𝑊 ) = ℂfld → ( ( Scalar ‘ 𝑊 ) ∈ CMetSp ↔ ℂfld ∈ CMetSp ) ) |
| 9 |
7 8
|
mpbiri |
⊢ ( ( Scalar ‘ 𝑊 ) = ℂfld → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
| 10 |
4 9
|
mp1i |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
| 11 |
|
simp2 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑈 ∈ 𝑆 ) |
| 12 |
|
simp3 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 13 |
1 2 3
|
cssbn |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ Ban ) |
| 14 |
6 10 11 12 13
|
syl31anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ Ban ) |
| 15 |
1 2
|
cphssphl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ Ban ) → 𝑋 ∈ ℂHil ) |
| 16 |
14 15
|
syld3an3 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ ℂHil ) |
| 17 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 18 |
1 17
|
resssca |
⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 19 |
18 4
|
eqtr3di |
⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑋 ) = ℂfld ) |
| 20 |
19
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( Scalar ‘ 𝑋 ) = ℂfld ) |
| 21 |
16 20
|
jca |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( 𝑋 ∈ ℂHil ∧ ( Scalar ‘ 𝑋 ) = ℂfld ) ) |