| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csscld.c | ⊢ 𝐶  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 2 |  | csscld.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( ocv ‘ 𝑊 )  =  ( ocv ‘ 𝑊 ) | 
						
							| 4 | 3 1 | cssi | ⊢ ( 𝑆  ∈  𝐶  →  𝑆  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  𝑆  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 7 | 6 3 | ocvss | ⊢ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 )  ⊆  ( Base ‘ 𝑊 ) | 
						
							| 8 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 9 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 10 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 11 | 6 8 9 10 3 | ocvval | ⊢ ( ( ( ocv ‘ 𝑊 ) ‘ 𝑆 )  ⊆  ( Base ‘ 𝑊 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) )  =  { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ∀ 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 12 | 7 11 | mp1i | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) )  =  { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ∀ 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 13 |  | riinrab | ⊢ ( ( Base ‘ 𝑊 )  ∩  ∩  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  =  { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ∀ 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } | 
						
							| 14 | 12 13 | eqtr4di | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) )  =  ( ( Base ‘ 𝑊 )  ∩  ∩  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) | 
						
							| 15 |  | cphnlm | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  NrmMod ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  𝑊  ∈  NrmMod ) | 
						
							| 17 |  | nlmngp | ⊢ ( 𝑊  ∈  NrmMod  →  𝑊  ∈  NrmGrp ) | 
						
							| 18 |  | ngptps | ⊢ ( 𝑊  ∈  NrmGrp  →  𝑊  ∈  TopSp ) | 
						
							| 19 | 16 17 18 | 3syl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  𝑊  ∈  TopSp ) | 
						
							| 20 | 6 2 | istps | ⊢ ( 𝑊  ∈  TopSp  ↔  𝐽  ∈  ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) | 
						
							| 21 | 19 20 | sylib | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  𝐽  ∈  ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) | 
						
							| 22 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ ( Base ‘ 𝑊 ) )  →  ( Base ‘ 𝑊 )  =  ∪  𝐽 ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  ( Base ‘ 𝑊 )  =  ∪  𝐽 ) | 
						
							| 24 | 23 | ineq1d | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  ( ( Base ‘ 𝑊 )  ∩  ∩  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  =  ( ∪  𝐽  ∩  ∩  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) | 
						
							| 25 | 5 14 24 | 3eqtrd | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  𝑆  =  ( ∪  𝐽  ∩  ∩  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) | 
						
							| 26 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ ( Base ‘ 𝑊 ) )  →  𝐽  ∈  Top ) | 
						
							| 27 | 21 26 | syl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  𝐽  ∈  Top ) | 
						
							| 28 | 7 | sseli | ⊢ ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 29 |  | fvex | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∈  V | 
						
							| 30 |  | eqid | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 31 | 30 | mptiniseg | ⊢ ( ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∈  V  →  ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  “  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  =  { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 32 | 29 31 | ax-mp | ⊢ ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  “  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  =  { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } | 
						
							| 33 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 34 |  | simpll | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  𝑊  ∈  ℂPreHil ) | 
						
							| 35 | 21 | adantr | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  𝐽  ∈  ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) | 
						
							| 36 | 35 | cnmptid | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  𝑥 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 37 |  | simpr | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 38 | 35 35 37 | cnmptc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  𝑦 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 39 | 2 33 8 34 35 36 38 | cnmpt1ip | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 40 | 33 | cnfldhaus | ⊢ ( TopOpen ‘ ℂfld )  ∈  Haus | 
						
							| 41 |  | cphclm | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  ℂMod ) | 
						
							| 42 | 9 | clm0 | ⊢ ( 𝑊  ∈  ℂMod  →  0  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 43 | 41 42 | syl | ⊢ ( 𝑊  ∈  ℂPreHil  →  0  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 44 | 43 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  0  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 45 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 46 | 44 45 | eqeltrrdi | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∈  ℂ ) | 
						
							| 47 |  | unicntop | ⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld ) | 
						
							| 48 | 47 | sncld | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Haus  ∧  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∈  ℂ )  →  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 49 | 40 46 48 | sylancr | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 50 |  | cnclima | ⊢ ( ( ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) )  ∧  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) )  →  ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  “  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 51 | 39 49 50 | syl2anc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  “  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 52 | 32 51 | eqeltrrid | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 53 | 28 52 | sylan2 | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  ∧  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) )  →  { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 54 | 53 | ralrimiva | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  ∀ 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 55 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 56 | 55 | riincld | ⊢ ( ( 𝐽  ∈  Top  ∧  ∀ 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ∪  𝐽  ∩  ∩  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 57 | 27 54 56 | syl2anc | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  ( ∪  𝐽  ∩  ∩  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥  ∈  ( Base ‘ 𝑊 )  ∣  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 58 | 25 57 | eqeltrd | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑆  ∈  𝐶 )  →  𝑆  ∈  ( Clsd ‘ 𝐽 ) ) |