Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cssval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
cssval.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
Assertion | cssi | ⊢ ( 𝑆 ∈ 𝐶 → 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cssval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
2 | cssval.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
3 | elfvdm | ⊢ ( 𝑆 ∈ ( ClSubSp ‘ 𝑊 ) → 𝑊 ∈ dom ClSubSp ) | |
4 | 3 2 | eleq2s | ⊢ ( 𝑆 ∈ 𝐶 → 𝑊 ∈ dom ClSubSp ) |
5 | 1 2 | iscss | ⊢ ( 𝑊 ∈ dom ClSubSp → ( 𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
6 | 4 5 | syl | ⊢ ( 𝑆 ∈ 𝐶 → ( 𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
7 | 6 | ibi | ⊢ ( 𝑆 ∈ 𝐶 → 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |