Metamath Proof Explorer


Theorem cssi

Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssval.o = ( ocv ‘ 𝑊 )
cssval.c 𝐶 = ( ClSubSp ‘ 𝑊 )
Assertion cssi ( 𝑆𝐶𝑆 = ( ‘ ( 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 cssval.o = ( ocv ‘ 𝑊 )
2 cssval.c 𝐶 = ( ClSubSp ‘ 𝑊 )
3 elfvdm ( 𝑆 ∈ ( ClSubSp ‘ 𝑊 ) → 𝑊 ∈ dom ClSubSp )
4 3 2 eleq2s ( 𝑆𝐶𝑊 ∈ dom ClSubSp )
5 1 2 iscss ( 𝑊 ∈ dom ClSubSp → ( 𝑆𝐶𝑆 = ( ‘ ( 𝑆 ) ) ) )
6 4 5 syl ( 𝑆𝐶 → ( 𝑆𝐶𝑆 = ( ‘ ( 𝑆 ) ) ) )
7 6 ibi ( 𝑆𝐶𝑆 = ( ‘ ( 𝑆 ) ) )