Step |
Hyp |
Ref |
Expression |
1 |
|
css0.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
4 |
2 3
|
ocvss |
⊢ ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ⊆ ( Base ‘ 𝑊 ) |
5 |
2 3
|
ocvss |
⊢ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) |
6 |
4 5
|
unssi |
⊢ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ⊆ ( Base ‘ 𝑊 ) |
7 |
2 1 3
|
ocvcss |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ⊆ ( Base ‘ 𝑊 ) ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) ∈ 𝐶 ) |
8 |
6 7
|
mpan2 |
⊢ ( 𝑊 ∈ PreHil → ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) ∈ 𝐶 ) |
9 |
3 1
|
cssi |
⊢ ( 𝐴 ∈ 𝐶 → 𝐴 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ) ) |
10 |
3 1
|
cssi |
⊢ ( 𝐵 ∈ 𝐶 → 𝐵 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) |
11 |
9 10
|
ineqan12d |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) = ( ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ) ∩ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) ) |
12 |
3
|
unocv |
⊢ ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) = ( ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ) ∩ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) |
13 |
11 12
|
eqtr4di |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) = ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) ) |
14 |
13
|
eleq1d |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ↔ ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) ∈ 𝐶 ) ) |
15 |
8 14
|
syl5ibrcom |
⊢ ( 𝑊 ∈ PreHil → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
16 |
15
|
3impib |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) |