| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csslss.c | ⊢ 𝐶  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 2 |  | csslss.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( ocv ‘ 𝑊 )  =  ( ocv ‘ 𝑊 ) | 
						
							| 4 | 3 1 | cssi | ⊢ ( 𝑆  ∈  𝐶  →  𝑆  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐶 )  →  𝑆  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 7 | 6 3 | ocvss | ⊢ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 )  ⊆  ( Base ‘ 𝑊 ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑆  ∈  𝐶  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 9 | 6 3 2 | ocvlss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( ( ocv ‘ 𝑊 ) ‘ 𝑆 )  ⊆  ( Base ‘ 𝑊 ) )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) )  ∈  𝐿 ) | 
						
							| 10 | 8 9 | sylan2 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐶 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) )  ∈  𝐿 ) | 
						
							| 11 | 5 10 | eqeltrd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐶 )  →  𝑆  ∈  𝐿 ) |