Step |
Hyp |
Ref |
Expression |
1 |
|
cssmre.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
cssmre.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
3 |
1 2
|
cssss |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ⊆ 𝑉 ) |
4 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝑉 ↔ 𝑥 ⊆ 𝑉 ) |
5 |
3 4
|
sylibr |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝒫 𝑉 ) |
6 |
5
|
a1i |
⊢ ( 𝑊 ∈ PreHil → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝒫 𝑉 ) ) |
7 |
6
|
ssrdv |
⊢ ( 𝑊 ∈ PreHil → 𝐶 ⊆ 𝒫 𝑉 ) |
8 |
1 2
|
css1 |
⊢ ( 𝑊 ∈ PreHil → 𝑉 ∈ 𝐶 ) |
9 |
|
intss1 |
⊢ ( 𝑧 ∈ 𝑥 → ∩ 𝑥 ⊆ 𝑧 ) |
10 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
11 |
10
|
ocv2ss |
⊢ ( ∩ 𝑥 ⊆ 𝑧 → ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ⊆ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) |
12 |
10
|
ocv2ss |
⊢ ( ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ⊆ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ⊆ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
13 |
9 11 12
|
3syl |
⊢ ( 𝑧 ∈ 𝑥 → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ⊆ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
14 |
13
|
ad2antll |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ⊆ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
15 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ) |
16 |
14 15
|
sseldd |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
17 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑥 ⊆ 𝐶 ) |
18 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑧 ∈ 𝑥 ) |
19 |
17 18
|
sseldd |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑧 ∈ 𝐶 ) |
20 |
10 2
|
cssi |
⊢ ( 𝑧 ∈ 𝐶 → 𝑧 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑧 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
22 |
16 21
|
eleqtrrd |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑦 ∈ 𝑧 ) |
23 |
22
|
expr |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ) → ( 𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) |
24 |
23
|
alrimiv |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) |
25 |
|
vex |
⊢ 𝑦 ∈ V |
26 |
25
|
elint |
⊢ ( 𝑦 ∈ ∩ 𝑥 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) |
27 |
24 26
|
sylibr |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ) → 𝑦 ∈ ∩ 𝑥 ) |
28 |
27
|
ex |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) → 𝑦 ∈ ∩ 𝑥 ) ) |
29 |
28
|
ssrdv |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ⊆ ∩ 𝑥 ) |
30 |
|
simp1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → 𝑊 ∈ PreHil ) |
31 |
|
intssuni |
⊢ ( 𝑥 ≠ ∅ → ∩ 𝑥 ⊆ ∪ 𝑥 ) |
32 |
31
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ ∪ 𝑥 ) |
33 |
|
simp2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → 𝑥 ⊆ 𝐶 ) |
34 |
7
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → 𝐶 ⊆ 𝒫 𝑉 ) |
35 |
33 34
|
sstrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → 𝑥 ⊆ 𝒫 𝑉 ) |
36 |
|
sspwuni |
⊢ ( 𝑥 ⊆ 𝒫 𝑉 ↔ ∪ 𝑥 ⊆ 𝑉 ) |
37 |
35 36
|
sylib |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∪ 𝑥 ⊆ 𝑉 ) |
38 |
32 37
|
sstrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ 𝑉 ) |
39 |
1 2 10
|
iscss2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ∩ 𝑥 ⊆ 𝑉 ) → ( ∩ 𝑥 ∈ 𝐶 ↔ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ⊆ ∩ 𝑥 ) ) |
40 |
30 38 39
|
syl2anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ( ∩ 𝑥 ∈ 𝐶 ↔ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ⊆ ∩ 𝑥 ) ) |
41 |
29 40
|
mpbird |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) |
42 |
7 8 41
|
ismred |
⊢ ( 𝑊 ∈ PreHil → 𝐶 ∈ ( Moore ‘ 𝑉 ) ) |