Metamath Proof Explorer


Theorem cssss

Description: A closed subspace is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssss.v 𝑉 = ( Base ‘ 𝑊 )
cssss.c 𝐶 = ( ClSubSp ‘ 𝑊 )
Assertion cssss ( 𝑆𝐶𝑆𝑉 )

Proof

Step Hyp Ref Expression
1 cssss.v 𝑉 = ( Base ‘ 𝑊 )
2 cssss.c 𝐶 = ( ClSubSp ‘ 𝑊 )
3 eqid ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 )
4 3 2 cssi ( 𝑆𝐶𝑆 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) )
5 1 3 ocvss ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ⊆ 𝑉
6 4 5 eqsstrdi ( 𝑆𝐶𝑆𝑉 )