Description: A closed subspace is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
cssss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
Assertion | cssss | ⊢ ( 𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
2 | cssss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
3 | eqid | ⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) | |
4 | 3 2 | cssi | ⊢ ( 𝑆 ∈ 𝐶 → 𝑆 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ) |
5 | 1 3 | ocvss | ⊢ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ⊆ 𝑉 |
6 | 4 5 | eqsstrdi | ⊢ ( 𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑉 ) |