Step |
Hyp |
Ref |
Expression |
1 |
|
cssval.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
2 |
|
cssval.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
3 |
|
elex |
⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) |
4 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ocv ‘ 𝑤 ) = ( ocv ‘ 𝑊 ) ) |
5 |
4 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ocv ‘ 𝑤 ) = ⊥ ) |
6 |
5
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) = ( ⊥ ‘ 𝑠 ) ) |
7 |
5 6
|
fveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ) |
8 |
7
|
eqeq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑠 = ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) ↔ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ) ) |
9 |
8
|
abbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑠 ∣ 𝑠 = ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) } = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |
10 |
|
df-css |
⊢ ClSubSp = ( 𝑤 ∈ V ↦ { 𝑠 ∣ 𝑠 = ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) } ) |
11 |
|
fvex |
⊢ ( Base ‘ 𝑊 ) ∈ V |
12 |
11
|
pwex |
⊢ 𝒫 ( Base ‘ 𝑊 ) ∈ V |
13 |
|
id |
⊢ ( 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) → 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
15 |
14 1
|
ocvss |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ⊆ ( Base ‘ 𝑊 ) |
16 |
|
fvex |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ∈ V |
17 |
16
|
elpw |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ∈ 𝒫 ( Base ‘ 𝑊 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ⊆ ( Base ‘ 𝑊 ) ) |
18 |
15 17
|
mpbir |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ∈ 𝒫 ( Base ‘ 𝑊 ) |
19 |
13 18
|
eqeltrdi |
⊢ ( 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) → 𝑠 ∈ 𝒫 ( Base ‘ 𝑊 ) ) |
20 |
19
|
abssi |
⊢ { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ⊆ 𝒫 ( Base ‘ 𝑊 ) |
21 |
12 20
|
ssexi |
⊢ { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ∈ V |
22 |
9 10 21
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( ClSubSp ‘ 𝑊 ) = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |
23 |
2 22
|
eqtrid |
⊢ ( 𝑊 ∈ V → 𝐶 = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |
24 |
3 23
|
syl |
⊢ ( 𝑊 ∈ 𝑋 → 𝐶 = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |