Step |
Hyp |
Ref |
Expression |
1 |
|
isfinite |
⊢ ( 𝐴 ∈ Fin ↔ 𝐴 ≺ ω ) |
2 |
1
|
notbii |
⊢ ( ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω ) |
3 |
|
relen |
⊢ Rel ≈ |
4 |
3
|
brrelex1i |
⊢ ( 𝑋 ≈ ω → 𝑋 ∈ V ) |
5 |
|
ssdomg |
⊢ ( 𝑋 ∈ V → ( 𝐴 ⊆ 𝑋 → 𝐴 ≼ 𝑋 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑋 ≈ ω → ( 𝐴 ⊆ 𝑋 → 𝐴 ≼ 𝑋 ) ) |
7 |
|
domen2 |
⊢ ( 𝑋 ≈ ω → ( 𝐴 ≼ 𝑋 ↔ 𝐴 ≼ ω ) ) |
8 |
6 7
|
sylibd |
⊢ ( 𝑋 ≈ ω → ( 𝐴 ⊆ 𝑋 → 𝐴 ≼ ω ) ) |
9 |
8
|
imp |
⊢ ( ( 𝑋 ≈ ω ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ≼ ω ) |
10 |
|
brdom2 |
⊢ ( 𝐴 ≼ ω ↔ ( 𝐴 ≺ ω ∨ 𝐴 ≈ ω ) ) |
11 |
9 10
|
sylib |
⊢ ( ( 𝑋 ≈ ω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ≺ ω ∨ 𝐴 ≈ ω ) ) |
12 |
11
|
adantlr |
⊢ ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ≺ ω ∨ 𝐴 ≈ ω ) ) |
13 |
12
|
ord |
⊢ ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ 𝐴 ⊆ 𝑋 ) → ( ¬ 𝐴 ≺ ω → 𝐴 ≈ ω ) ) |
14 |
2 13
|
syl5bi |
⊢ ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ 𝐴 ⊆ 𝑋 ) → ( ¬ 𝐴 ∈ Fin → 𝐴 ≈ ω ) ) |
15 |
14
|
impr |
⊢ ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ ( 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ) → 𝐴 ≈ ω ) |
16 |
|
enen2 |
⊢ ( 𝑌 ≈ ω → ( 𝐴 ≈ 𝑌 ↔ 𝐴 ≈ ω ) ) |
17 |
16
|
ad2antlr |
⊢ ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ ( 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ) → ( 𝐴 ≈ 𝑌 ↔ 𝐴 ≈ ω ) ) |
18 |
15 17
|
mpbird |
⊢ ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ ( 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ) → 𝐴 ≈ 𝑌 ) |