Metamath Proof Explorer


Theorem ctbnfien

Description: An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Assertion ctbnfien ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ ( 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin ) ) → 𝐴𝑌 )

Proof

Step Hyp Ref Expression
1 isfinite ( 𝐴 ∈ Fin ↔ 𝐴 ≺ ω )
2 1 notbii ( ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω )
3 relen Rel ≈
4 3 brrelex1i ( 𝑋 ≈ ω → 𝑋 ∈ V )
5 ssdomg ( 𝑋 ∈ V → ( 𝐴𝑋𝐴𝑋 ) )
6 4 5 syl ( 𝑋 ≈ ω → ( 𝐴𝑋𝐴𝑋 ) )
7 domen2 ( 𝑋 ≈ ω → ( 𝐴𝑋𝐴 ≼ ω ) )
8 6 7 sylibd ( 𝑋 ≈ ω → ( 𝐴𝑋𝐴 ≼ ω ) )
9 8 imp ( ( 𝑋 ≈ ω ∧ 𝐴𝑋 ) → 𝐴 ≼ ω )
10 brdom2 ( 𝐴 ≼ ω ↔ ( 𝐴 ≺ ω ∨ 𝐴 ≈ ω ) )
11 9 10 sylib ( ( 𝑋 ≈ ω ∧ 𝐴𝑋 ) → ( 𝐴 ≺ ω ∨ 𝐴 ≈ ω ) )
12 11 adantlr ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ 𝐴𝑋 ) → ( 𝐴 ≺ ω ∨ 𝐴 ≈ ω ) )
13 12 ord ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ 𝐴𝑋 ) → ( ¬ 𝐴 ≺ ω → 𝐴 ≈ ω ) )
14 2 13 syl5bi ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ 𝐴𝑋 ) → ( ¬ 𝐴 ∈ Fin → 𝐴 ≈ ω ) )
15 14 impr ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ ( 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin ) ) → 𝐴 ≈ ω )
16 enen2 ( 𝑌 ≈ ω → ( 𝐴𝑌𝐴 ≈ ω ) )
17 16 ad2antlr ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ ( 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin ) ) → ( 𝐴𝑌𝐴 ≈ ω ) )
18 15 17 mpbird ( ( ( 𝑋 ≈ ω ∧ 𝑌 ≈ ω ) ∧ ( 𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin ) ) → 𝐴𝑌 )