Metamath Proof Explorer


Theorem cu2

Description: The cube of 2 is 8. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion cu2 ( 2 ↑ 3 ) = 8

Proof

Step Hyp Ref Expression
1 df-3 3 = ( 2 + 1 )
2 1 oveq2i ( 2 ↑ 3 ) = ( 2 ↑ ( 2 + 1 ) )
3 2cn 2 ∈ ℂ
4 2nn0 2 ∈ ℕ0
5 expp1 ( ( 2 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( 2 ↑ ( 2 + 1 ) ) = ( ( 2 ↑ 2 ) · 2 ) )
6 3 4 5 mp2an ( 2 ↑ ( 2 + 1 ) ) = ( ( 2 ↑ 2 ) · 2 )
7 sq2 ( 2 ↑ 2 ) = 4
8 7 oveq1i ( ( 2 ↑ 2 ) · 2 ) = ( 4 · 2 )
9 4t2e8 ( 4 · 2 ) = 8
10 8 9 eqtri ( ( 2 ↑ 2 ) · 2 ) = 8
11 6 10 eqtri ( 2 ↑ ( 2 + 1 ) ) = 8
12 2 11 eqtri ( 2 ↑ 3 ) = 8