Step |
Hyp |
Ref |
Expression |
1 |
|
cubic.r |
⊢ 𝑅 = { 1 , ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) , ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) } |
2 |
|
cubic.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
3 |
|
cubic.z |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
4 |
|
cubic.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
5 |
|
cubic.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
6 |
|
cubic.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
7 |
|
cubic.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
8 |
|
cubic.t |
⊢ ( 𝜑 → 𝑇 = ( ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ) |
9 |
|
cubic.g |
⊢ ( 𝜑 → 𝐺 = ( ( 𝑁 ↑ 2 ) − ( 4 · ( 𝑀 ↑ 3 ) ) ) ) |
10 |
|
cubic.m |
⊢ ( 𝜑 → 𝑀 = ( ( 𝐵 ↑ 2 ) − ( 3 · ( 𝐴 · 𝐶 ) ) ) ) |
11 |
|
cubic.n |
⊢ ( 𝜑 → 𝑁 = ( ( ( 2 · ( 𝐵 ↑ 3 ) ) − ( ( 9 · 𝐴 ) · ( 𝐵 · 𝐶 ) ) ) + ( ; 2 7 · ( ( 𝐴 ↑ 2 ) · 𝐷 ) ) ) ) |
12 |
|
cubic.0 |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
13 |
|
2cn |
⊢ 2 ∈ ℂ |
14 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
15 |
|
expcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝐵 ↑ 3 ) ∈ ℂ ) |
16 |
4 14 15
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 ↑ 3 ) ∈ ℂ ) |
17 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝐵 ↑ 3 ) ∈ ℂ ) → ( 2 · ( 𝐵 ↑ 3 ) ) ∈ ℂ ) |
18 |
13 16 17
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( 𝐵 ↑ 3 ) ) ∈ ℂ ) |
19 |
|
9cn |
⊢ 9 ∈ ℂ |
20 |
|
mulcl |
⊢ ( ( 9 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 9 · 𝐴 ) ∈ ℂ ) |
21 |
19 2 20
|
sylancr |
⊢ ( 𝜑 → ( 9 · 𝐴 ) ∈ ℂ ) |
22 |
4 5
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
23 |
21 22
|
mulcld |
⊢ ( 𝜑 → ( ( 9 · 𝐴 ) · ( 𝐵 · 𝐶 ) ) ∈ ℂ ) |
24 |
18 23
|
subcld |
⊢ ( 𝜑 → ( ( 2 · ( 𝐵 ↑ 3 ) ) − ( ( 9 · 𝐴 ) · ( 𝐵 · 𝐶 ) ) ) ∈ ℂ ) |
25 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
26 |
|
7nn |
⊢ 7 ∈ ℕ |
27 |
25 26
|
decnncl |
⊢ ; 2 7 ∈ ℕ |
28 |
27
|
nncni |
⊢ ; 2 7 ∈ ℂ |
29 |
2
|
sqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
30 |
29 6
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · 𝐷 ) ∈ ℂ ) |
31 |
|
mulcl |
⊢ ( ( ; 2 7 ∈ ℂ ∧ ( ( 𝐴 ↑ 2 ) · 𝐷 ) ∈ ℂ ) → ( ; 2 7 · ( ( 𝐴 ↑ 2 ) · 𝐷 ) ) ∈ ℂ ) |
32 |
28 30 31
|
sylancr |
⊢ ( 𝜑 → ( ; 2 7 · ( ( 𝐴 ↑ 2 ) · 𝐷 ) ) ∈ ℂ ) |
33 |
24 32
|
addcld |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝐵 ↑ 3 ) ) − ( ( 9 · 𝐴 ) · ( 𝐵 · 𝐶 ) ) ) + ( ; 2 7 · ( ( 𝐴 ↑ 2 ) · 𝐷 ) ) ) ∈ ℂ ) |
34 |
11 33
|
eqeltrd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
35 |
34
|
sqcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℂ ) |
36 |
|
4cn |
⊢ 4 ∈ ℂ |
37 |
4
|
sqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
38 |
|
3cn |
⊢ 3 ∈ ℂ |
39 |
2 5
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
40 |
|
mulcl |
⊢ ( ( 3 ∈ ℂ ∧ ( 𝐴 · 𝐶 ) ∈ ℂ ) → ( 3 · ( 𝐴 · 𝐶 ) ) ∈ ℂ ) |
41 |
38 39 40
|
sylancr |
⊢ ( 𝜑 → ( 3 · ( 𝐴 · 𝐶 ) ) ∈ ℂ ) |
42 |
37 41
|
subcld |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) − ( 3 · ( 𝐴 · 𝐶 ) ) ) ∈ ℂ ) |
43 |
10 42
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
44 |
|
expcl |
⊢ ( ( 𝑀 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑀 ↑ 3 ) ∈ ℂ ) |
45 |
43 14 44
|
sylancl |
⊢ ( 𝜑 → ( 𝑀 ↑ 3 ) ∈ ℂ ) |
46 |
|
mulcl |
⊢ ( ( 4 ∈ ℂ ∧ ( 𝑀 ↑ 3 ) ∈ ℂ ) → ( 4 · ( 𝑀 ↑ 3 ) ) ∈ ℂ ) |
47 |
36 45 46
|
sylancr |
⊢ ( 𝜑 → ( 4 · ( 𝑀 ↑ 3 ) ) ∈ ℂ ) |
48 |
35 47
|
subcld |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) − ( 4 · ( 𝑀 ↑ 3 ) ) ) ∈ ℂ ) |
49 |
9 48
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
50 |
49
|
sqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝐺 ) ∈ ℂ ) |
51 |
34 50
|
addcld |
⊢ ( 𝜑 → ( 𝑁 + ( √ ‘ 𝐺 ) ) ∈ ℂ ) |
52 |
51
|
halfcld |
⊢ ( 𝜑 → ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ∈ ℂ ) |
53 |
|
3ne0 |
⊢ 3 ≠ 0 |
54 |
38 53
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
55 |
|
cxpcl |
⊢ ( ( ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ∈ ℂ ∧ ( 1 / 3 ) ∈ ℂ ) → ( ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ∈ ℂ ) |
56 |
52 54 55
|
sylancl |
⊢ ( 𝜑 → ( ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ∈ ℂ ) |
57 |
8 56
|
eqeltrd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
58 |
8
|
oveq1d |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) = ( ( ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) ) |
59 |
|
3nn |
⊢ 3 ∈ ℕ |
60 |
|
cxproot |
⊢ ( ( ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ∈ ℂ ∧ 3 ∈ ℕ ) → ( ( ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) = ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ) |
61 |
52 59 60
|
sylancl |
⊢ ( 𝜑 → ( ( ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) = ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ) |
62 |
58 61
|
eqtrd |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) = ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ) |
63 |
49
|
sqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ 𝐺 ) ↑ 2 ) = 𝐺 ) |
64 |
63 9
|
eqtrd |
⊢ ( 𝜑 → ( ( √ ‘ 𝐺 ) ↑ 2 ) = ( ( 𝑁 ↑ 2 ) − ( 4 · ( 𝑀 ↑ 3 ) ) ) ) |
65 |
13
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
66 |
36
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℂ ) |
67 |
|
4ne0 |
⊢ 4 ≠ 0 |
68 |
67
|
a1i |
⊢ ( 𝜑 → 4 ≠ 0 ) |
69 |
|
3z |
⊢ 3 ∈ ℤ |
70 |
69
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℤ ) |
71 |
43 12 70
|
expne0d |
⊢ ( 𝜑 → ( 𝑀 ↑ 3 ) ≠ 0 ) |
72 |
66 45 68 71
|
mulne0d |
⊢ ( 𝜑 → ( 4 · ( 𝑀 ↑ 3 ) ) ≠ 0 ) |
73 |
64
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) − ( ( √ ‘ 𝐺 ) ↑ 2 ) ) = ( ( 𝑁 ↑ 2 ) − ( ( 𝑁 ↑ 2 ) − ( 4 · ( 𝑀 ↑ 3 ) ) ) ) ) |
74 |
|
subsq |
⊢ ( ( 𝑁 ∈ ℂ ∧ ( √ ‘ 𝐺 ) ∈ ℂ ) → ( ( 𝑁 ↑ 2 ) − ( ( √ ‘ 𝐺 ) ↑ 2 ) ) = ( ( 𝑁 + ( √ ‘ 𝐺 ) ) · ( 𝑁 − ( √ ‘ 𝐺 ) ) ) ) |
75 |
34 50 74
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) − ( ( √ ‘ 𝐺 ) ↑ 2 ) ) = ( ( 𝑁 + ( √ ‘ 𝐺 ) ) · ( 𝑁 − ( √ ‘ 𝐺 ) ) ) ) |
76 |
35 47
|
nncand |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) − ( ( 𝑁 ↑ 2 ) − ( 4 · ( 𝑀 ↑ 3 ) ) ) ) = ( 4 · ( 𝑀 ↑ 3 ) ) ) |
77 |
73 75 76
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑁 + ( √ ‘ 𝐺 ) ) · ( 𝑁 − ( √ ‘ 𝐺 ) ) ) = ( 4 · ( 𝑀 ↑ 3 ) ) ) |
78 |
34 50
|
subcld |
⊢ ( 𝜑 → ( 𝑁 − ( √ ‘ 𝐺 ) ) ∈ ℂ ) |
79 |
78
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( 𝑁 − ( √ ‘ 𝐺 ) ) ) = 0 ) |
80 |
72 77 79
|
3netr4d |
⊢ ( 𝜑 → ( ( 𝑁 + ( √ ‘ 𝐺 ) ) · ( 𝑁 − ( √ ‘ 𝐺 ) ) ) ≠ ( 0 · ( 𝑁 − ( √ ‘ 𝐺 ) ) ) ) |
81 |
|
oveq1 |
⊢ ( ( 𝑁 + ( √ ‘ 𝐺 ) ) = 0 → ( ( 𝑁 + ( √ ‘ 𝐺 ) ) · ( 𝑁 − ( √ ‘ 𝐺 ) ) ) = ( 0 · ( 𝑁 − ( √ ‘ 𝐺 ) ) ) ) |
82 |
81
|
necon3i |
⊢ ( ( ( 𝑁 + ( √ ‘ 𝐺 ) ) · ( 𝑁 − ( √ ‘ 𝐺 ) ) ) ≠ ( 0 · ( 𝑁 − ( √ ‘ 𝐺 ) ) ) → ( 𝑁 + ( √ ‘ 𝐺 ) ) ≠ 0 ) |
83 |
80 82
|
syl |
⊢ ( 𝜑 → ( 𝑁 + ( √ ‘ 𝐺 ) ) ≠ 0 ) |
84 |
|
2ne0 |
⊢ 2 ≠ 0 |
85 |
84
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
86 |
51 65 83 85
|
divne0d |
⊢ ( 𝜑 → ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ≠ 0 ) |
87 |
54
|
a1i |
⊢ ( 𝜑 → ( 1 / 3 ) ∈ ℂ ) |
88 |
52 86 87
|
cxpne0d |
⊢ ( 𝜑 → ( ( ( 𝑁 + ( √ ‘ 𝐺 ) ) / 2 ) ↑𝑐 ( 1 / 3 ) ) ≠ 0 ) |
89 |
8 88
|
eqnetrd |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
90 |
2 3 4 5 6 7 57 62 50 64 10 11 89
|
cubic2 |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( 𝑋 ↑ 3 ) ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) = 0 ↔ ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / ( 3 · 𝐴 ) ) ) ) ) |
91 |
1
|
1cubr |
⊢ ( 𝑟 ∈ 𝑅 ↔ ( 𝑟 ∈ ℂ ∧ ( 𝑟 ↑ 3 ) = 1 ) ) |
92 |
91
|
anbi1i |
⊢ ( ( 𝑟 ∈ 𝑅 ∧ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / ( 3 · 𝐴 ) ) ) ↔ ( ( 𝑟 ∈ ℂ ∧ ( 𝑟 ↑ 3 ) = 1 ) ∧ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / ( 3 · 𝐴 ) ) ) ) |
93 |
|
anass |
⊢ ( ( ( 𝑟 ∈ ℂ ∧ ( 𝑟 ↑ 3 ) = 1 ) ∧ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / ( 3 · 𝐴 ) ) ) ↔ ( 𝑟 ∈ ℂ ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / ( 3 · 𝐴 ) ) ) ) ) |
94 |
92 93
|
bitri |
⊢ ( ( 𝑟 ∈ 𝑅 ∧ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / ( 3 · 𝐴 ) ) ) ↔ ( 𝑟 ∈ ℂ ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / ( 3 · 𝐴 ) ) ) ) ) |
95 |
94
|
rexbii2 |
⊢ ( ∃ 𝑟 ∈ 𝑅 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / ( 3 · 𝐴 ) ) ↔ ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / ( 3 · 𝐴 ) ) ) ) |
96 |
90 95
|
bitr4di |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( 𝑋 ↑ 3 ) ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) = 0 ↔ ∃ 𝑟 ∈ 𝑅 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / ( 3 · 𝐴 ) ) ) ) |