Description: Functionality of a curried function with a constant first argument. (Contributed by NM, 29-Mar-2008)
Ref | Expression | ||
---|---|---|---|
Hypothesis | curry1.1 | ⊢ 𝐺 = ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) | |
Assertion | curry1f | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐴 ) → 𝐺 : 𝐵 ⟶ 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curry1.1 | ⊢ 𝐺 = ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) | |
2 | ffn | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 → 𝐹 Fn ( 𝐴 × 𝐵 ) ) | |
3 | 1 | curry1 | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → 𝐺 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐶 𝐹 𝑥 ) ) ) |
4 | 2 3 | sylan | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐴 ) → 𝐺 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐶 𝐹 𝑥 ) ) ) |
5 | fovrn | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐶 𝐹 𝑥 ) ∈ 𝐷 ) | |
6 | 5 | 3expa | ⊢ ( ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐶 𝐹 𝑥 ) ∈ 𝐷 ) |
7 | 4 6 | fmpt3d | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐴 ) → 𝐺 : 𝐵 ⟶ 𝐷 ) |