Metamath Proof Explorer


Theorem curry2f

Description: Functionality of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008)

Ref Expression
Hypothesis curry2.1 𝐺 = ( 𝐹 ( 1st ↾ ( V × { 𝐶 } ) ) )
Assertion curry2f ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷𝐶𝐵 ) → 𝐺 : 𝐴𝐷 )

Proof

Step Hyp Ref Expression
1 curry2.1 𝐺 = ( 𝐹 ( 1st ↾ ( V × { 𝐶 } ) ) )
2 ffn ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷𝐹 Fn ( 𝐴 × 𝐵 ) )
3 1 curry2 ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐵 ) → 𝐺 = ( 𝑥𝐴 ↦ ( 𝑥 𝐹 𝐶 ) ) )
4 2 3 sylan ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷𝐶𝐵 ) → 𝐺 = ( 𝑥𝐴 ↦ ( 𝑥 𝐹 𝐶 ) ) )
5 fovrn ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷𝑥𝐴𝐶𝐵 ) → ( 𝑥 𝐹 𝐶 ) ∈ 𝐷 )
6 5 3com23 ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷𝐶𝐵𝑥𝐴 ) → ( 𝑥 𝐹 𝐶 ) ∈ 𝐷 )
7 6 3expa ( ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷𝐶𝐵 ) ∧ 𝑥𝐴 ) → ( 𝑥 𝐹 𝐶 ) ∈ 𝐷 )
8 4 7 fmpt3d ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷𝐶𝐵 ) → 𝐺 : 𝐴𝐷 )