Step |
Hyp |
Ref |
Expression |
1 |
|
curry2.1 |
⊢ 𝐺 = ( 𝐹 ∘ ◡ ( 1st ↾ ( V × { 𝐶 } ) ) ) |
2 |
|
ffn |
⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 → 𝐹 Fn ( 𝐴 × 𝐵 ) ) |
3 |
1
|
curry2 |
⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐵 ) → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑥 𝐹 𝐶 ) ) ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐵 ) → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑥 𝐹 𝐶 ) ) ) |
5 |
|
fovrn |
⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝑥 𝐹 𝐶 ) ∈ 𝐷 ) |
6 |
5
|
3com23 |
⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐹 𝐶 ) ∈ 𝐷 ) |
7 |
6
|
3expa |
⊢ ( ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐹 𝐶 ) ∈ 𝐷 ) |
8 |
4 7
|
fmpt3d |
⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ∧ 𝐶 ∈ 𝐵 ) → 𝐺 : 𝐴 ⟶ 𝐷 ) |