| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 3 |
1 2
|
iscplgredg |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑘 , 𝑛 } ⊆ 𝑒 ) ) |
| 4 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) ∧ { 𝑘 , 𝑛 } ⊆ 𝑒 ) → 𝐺 ∈ UHGraph ) |
| 5 |
|
simpr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑘 ∈ ( Vtx ‘ 𝐺 ) ) |
| 6 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) → 𝑛 ∈ ( Vtx ‘ 𝐺 ) ) |
| 7 |
5 6
|
anim12i |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ) → ( 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) ∧ { 𝑘 , 𝑛 } ⊆ 𝑒 ) → ( 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 10 |
|
id |
⊢ ( 𝑒 ∈ ( Edg ‘ 𝐺 ) → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 11 |
|
sseq2 |
⊢ ( 𝑐 = 𝑒 → ( { 𝑘 , 𝑛 } ⊆ 𝑐 ↔ { 𝑘 , 𝑛 } ⊆ 𝑒 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑒 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑐 = 𝑒 ) → ( { 𝑘 , 𝑛 } ⊆ 𝑐 ↔ { 𝑘 , 𝑛 } ⊆ 𝑒 ) ) |
| 13 |
10 12
|
rspcedv |
⊢ ( 𝑒 ∈ ( Edg ‘ 𝐺 ) → ( { 𝑘 , 𝑛 } ⊆ 𝑒 → ∃ 𝑐 ∈ ( Edg ‘ 𝐺 ) { 𝑘 , 𝑛 } ⊆ 𝑐 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑘 , 𝑛 } ⊆ 𝑒 → ∃ 𝑐 ∈ ( Edg ‘ 𝐺 ) { 𝑘 , 𝑛 } ⊆ 𝑐 ) ) |
| 15 |
14
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) ∧ { 𝑘 , 𝑛 } ⊆ 𝑒 ) → ∃ 𝑐 ∈ ( Edg ‘ 𝐺 ) { 𝑘 , 𝑛 } ⊆ 𝑐 ) |
| 16 |
1 2
|
1pthon2v |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ∃ 𝑐 ∈ ( Edg ‘ 𝐺 ) { 𝑘 , 𝑛 } ⊆ 𝑐 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) |
| 17 |
4 9 15 16
|
syl3anc |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) ∧ { 𝑘 , 𝑛 } ⊆ 𝑒 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) |
| 18 |
17
|
rexlimdva2 |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ) → ( ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑘 , 𝑛 } ⊆ 𝑒 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
| 19 |
18
|
ralimdva |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑘 , 𝑛 } ⊆ 𝑒 → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
| 20 |
19
|
ralimdva |
⊢ ( 𝐺 ∈ UHGraph → ( ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑘 , 𝑛 } ⊆ 𝑒 → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
| 21 |
3 20
|
sylbid |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ∈ ComplGraph → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
| 22 |
21
|
imp |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph ) → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) |
| 23 |
1
|
isconngr1 |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ∈ ConnGraph ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph ) → ( 𝐺 ∈ ConnGraph ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
| 25 |
22 24
|
mpbird |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph ) → 𝐺 ∈ ConnGraph ) |