| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cplgr0v.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								1
							 | 
							eqeq1i | 
							⊢ ( 𝑉  =  ∅  ↔  ( Vtx ‘ 𝐺 )  =  ∅ )  | 
						
						
							| 3 | 
							
								
							 | 
							usgr0v | 
							⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  ∈  USGraph )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl3an2b | 
							⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑉  =  ∅  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  ∈  USGraph )  | 
						
						
							| 5 | 
							
								1
							 | 
							cplgr0v | 
							⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑉  =  ∅ )  →  𝐺  ∈  ComplGraph )  | 
						
						
							| 6 | 
							
								5
							 | 
							3adant3 | 
							⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑉  =  ∅  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  ∈  ComplGraph )  | 
						
						
							| 7 | 
							
								
							 | 
							iscusgr | 
							⊢ ( 𝐺  ∈  ComplUSGraph  ↔  ( 𝐺  ∈  USGraph  ∧  𝐺  ∈  ComplGraph ) )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							sylanbrc | 
							⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑉  =  ∅  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  ∈  ComplUSGraph )  |