Step |
Hyp |
Ref |
Expression |
1 |
|
cplgr0v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
eqeq1i |
⊢ ( 𝑉 = ∅ ↔ ( Vtx ‘ 𝐺 ) = ∅ ) |
3 |
|
usgr0v |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ USGraph ) |
4 |
2 3
|
syl3an2b |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ USGraph ) |
5 |
1
|
cplgr0v |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ) → 𝐺 ∈ ComplGraph ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ ComplGraph ) |
7 |
|
iscusgr |
⊢ ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ) |
8 |
4 6 7
|
sylanbrc |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ ComplUSGraph ) |