| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cplgr0v.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								1
							 | 
							cplgr1vlem | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  𝐺  ∈  V )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  ∈  V )  | 
						
						
							| 4 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  ( iEdg ‘ 𝐺 )  =  ∅ )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							usgr0e | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  ∈  USGraph )  | 
						
						
							| 6 | 
							
								1
							 | 
							cplgr1v | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  𝐺  ∈  ComplGraph )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  ∈  ComplGraph )  | 
						
						
							| 8 | 
							
								
							 | 
							iscusgr | 
							⊢ ( 𝐺  ∈  ComplUSGraph  ↔  ( 𝐺  ∈  USGraph  ∧  𝐺  ∈  ComplGraph ) )  | 
						
						
							| 9 | 
							
								5 7 8
							 | 
							sylanbrc | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  ∈  ComplUSGraph )  |