Step |
Hyp |
Ref |
Expression |
1 |
|
iscusgrvtx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
iscusgredg.v |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
iscusgredg |
⊢ ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 ) ) |
4 |
|
usgredgss |
⊢ ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
5 |
1
|
pweqi |
⊢ 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐺 ) |
6 |
5
|
rabeqi |
⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
7 |
4 2 6
|
3sstr4g |
⊢ ( 𝐺 ∈ USGraph → 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
8 |
7
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 ) → 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
9 |
|
elss2prb |
⊢ ( 𝑝 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) ) |
10 |
|
sneq |
⊢ ( 𝑣 = 𝑦 → { 𝑣 } = { 𝑦 } ) |
11 |
10
|
difeq2d |
⊢ ( 𝑣 = 𝑦 → ( 𝑉 ∖ { 𝑣 } ) = ( 𝑉 ∖ { 𝑦 } ) ) |
12 |
|
preq2 |
⊢ ( 𝑣 = 𝑦 → { 𝑛 , 𝑣 } = { 𝑛 , 𝑦 } ) |
13 |
12
|
eleq1d |
⊢ ( 𝑣 = 𝑦 → ( { 𝑛 , 𝑣 } ∈ 𝐸 ↔ { 𝑛 , 𝑦 } ∈ 𝐸 ) ) |
14 |
11 13
|
raleqbidv |
⊢ ( 𝑣 = 𝑦 → ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 ↔ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑦 } ) { 𝑛 , 𝑦 } ∈ 𝐸 ) ) |
15 |
14
|
rspcv |
⊢ ( 𝑦 ∈ 𝑉 → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 → ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑦 } ) { 𝑛 , 𝑦 } ∈ 𝐸 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 → ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑦 } ) { 𝑛 , 𝑦 } ∈ 𝐸 ) ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) ) → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 → ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑦 } ) { 𝑛 , 𝑦 } ∈ 𝐸 ) ) |
18 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → 𝑧 ∈ 𝑉 ) |
19 |
|
necom |
⊢ ( 𝑦 ≠ 𝑧 ↔ 𝑧 ≠ 𝑦 ) |
20 |
19
|
biimpi |
⊢ ( 𝑦 ≠ 𝑧 → 𝑧 ≠ 𝑦 ) |
21 |
20
|
adantr |
⊢ ( ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) → 𝑧 ≠ 𝑦 ) |
22 |
18 21
|
anim12i |
⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) ) → ( 𝑧 ∈ 𝑉 ∧ 𝑧 ≠ 𝑦 ) ) |
23 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ↔ ( 𝑧 ∈ 𝑉 ∧ 𝑧 ≠ 𝑦 ) ) |
24 |
22 23
|
sylibr |
⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) ) → 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ) |
25 |
|
preq1 |
⊢ ( 𝑛 = 𝑧 → { 𝑛 , 𝑦 } = { 𝑧 , 𝑦 } ) |
26 |
25
|
eleq1d |
⊢ ( 𝑛 = 𝑧 → ( { 𝑛 , 𝑦 } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
27 |
26
|
rspcv |
⊢ ( 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) → ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑦 } ) { 𝑛 , 𝑦 } ∈ 𝐸 → { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
28 |
24 27
|
syl |
⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) ) → ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑦 } ) { 𝑛 , 𝑦 } ∈ 𝐸 → { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
29 |
|
id |
⊢ ( 𝑝 = { 𝑦 , 𝑧 } → 𝑝 = { 𝑦 , 𝑧 } ) |
30 |
|
prcom |
⊢ { 𝑦 , 𝑧 } = { 𝑧 , 𝑦 } |
31 |
29 30
|
eqtr2di |
⊢ ( 𝑝 = { 𝑦 , 𝑧 } → { 𝑧 , 𝑦 } = 𝑝 ) |
32 |
31
|
eleq1d |
⊢ ( 𝑝 = { 𝑦 , 𝑧 } → ( { 𝑧 , 𝑦 } ∈ 𝐸 ↔ 𝑝 ∈ 𝐸 ) ) |
33 |
32
|
biimpd |
⊢ ( 𝑝 = { 𝑦 , 𝑧 } → ( { 𝑧 , 𝑦 } ∈ 𝐸 → 𝑝 ∈ 𝐸 ) ) |
34 |
33
|
a1d |
⊢ ( 𝑝 = { 𝑦 , 𝑧 } → ( 𝐺 ∈ USGraph → ( { 𝑧 , 𝑦 } ∈ 𝐸 → 𝑝 ∈ 𝐸 ) ) ) |
35 |
34
|
ad2antll |
⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ( { 𝑧 , 𝑦 } ∈ 𝐸 → 𝑝 ∈ 𝐸 ) ) ) |
36 |
35
|
com23 |
⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) ) → ( { 𝑧 , 𝑦 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑝 ∈ 𝐸 ) ) ) |
37 |
17 28 36
|
3syld |
⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) ) → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑝 ∈ 𝐸 ) ) ) |
38 |
37
|
ex |
⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑝 ∈ 𝐸 ) ) ) ) |
39 |
38
|
rexlimivv |
⊢ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑝 ∈ 𝐸 ) ) ) |
40 |
39
|
com13 |
⊢ ( 𝐺 ∈ USGraph → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) → 𝑝 ∈ 𝐸 ) ) ) |
41 |
40
|
imp |
⊢ ( ( 𝐺 ∈ USGraph ∧ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 ) → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑦 ≠ 𝑧 ∧ 𝑝 = { 𝑦 , 𝑧 } ) → 𝑝 ∈ 𝐸 ) ) |
42 |
9 41
|
syl5bi |
⊢ ( ( 𝐺 ∈ USGraph ∧ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 ) → ( 𝑝 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝑝 ∈ 𝐸 ) ) |
43 |
42
|
ssrdv |
⊢ ( ( 𝐺 ∈ USGraph ∧ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 ) → { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ⊆ 𝐸 ) |
44 |
8 43
|
eqssd |
⊢ ( ( 𝐺 ∈ USGraph ∧ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑛 , 𝑣 } ∈ 𝐸 ) → 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
45 |
3 44
|
sylbi |
⊢ ( 𝐺 ∈ ComplUSGraph → 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |