Metamath Proof Explorer


Theorem cusgrexilem1

Description: Lemma 1 for cusgrexi . (Contributed by Alexander van der Vekens, 12-Jan-2018)

Ref Expression
Hypothesis usgrexi.p 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 }
Assertion cusgrexilem1 ( 𝑉𝑊 → ( I ↾ 𝑃 ) ∈ V )

Proof

Step Hyp Ref Expression
1 usgrexi.p 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 }
2 pwexg ( 𝑉𝑊 → 𝒫 𝑉 ∈ V )
3 1 2 rabexd ( 𝑉𝑊𝑃 ∈ V )
4 resiexg ( 𝑃 ∈ V → ( I ↾ 𝑃 ) ∈ V )
5 3 4 syl ( 𝑉𝑊 → ( I ↾ 𝑃 ) ∈ V )