Step |
Hyp |
Ref |
Expression |
1 |
|
usgrexi.p |
⊢ 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |
2 |
|
simpr |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) |
3 |
|
eldifi |
⊢ ( 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) → 𝑛 ∈ 𝑉 ) |
4 |
|
prelpwi |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → { 𝑣 , 𝑛 } ∈ 𝒫 𝑉 ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) → { 𝑣 , 𝑛 } ∈ 𝒫 𝑉 ) |
6 |
|
eldifsni |
⊢ ( 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) → 𝑛 ≠ 𝑣 ) |
7 |
6
|
necomd |
⊢ ( 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) → 𝑣 ≠ 𝑛 ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) → 𝑣 ≠ 𝑛 ) |
9 |
|
hashprg |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( 𝑣 ≠ 𝑛 ↔ ( ♯ ‘ { 𝑣 , 𝑛 } ) = 2 ) ) |
10 |
2 3 9
|
syl2an |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) → ( 𝑣 ≠ 𝑛 ↔ ( ♯ ‘ { 𝑣 , 𝑛 } ) = 2 ) ) |
11 |
8 10
|
mpbid |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) → ( ♯ ‘ { 𝑣 , 𝑛 } ) = 2 ) |
12 |
|
fveqeq2 |
⊢ ( 𝑥 = { 𝑣 , 𝑛 } → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ { 𝑣 , 𝑛 } ) = 2 ) ) |
13 |
|
rnresi |
⊢ ran ( I ↾ 𝑃 ) = 𝑃 |
14 |
13 1
|
eqtri |
⊢ ran ( I ↾ 𝑃 ) = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |
15 |
12 14
|
elrab2 |
⊢ ( { 𝑣 , 𝑛 } ∈ ran ( I ↾ 𝑃 ) ↔ ( { 𝑣 , 𝑛 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝑣 , 𝑛 } ) = 2 ) ) |
16 |
5 11 15
|
sylanbrc |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) → { 𝑣 , 𝑛 } ∈ ran ( I ↾ 𝑃 ) ) |
17 |
|
sseq2 |
⊢ ( 𝑒 = { 𝑣 , 𝑛 } → ( { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ { 𝑣 , 𝑛 } ⊆ { 𝑣 , 𝑛 } ) ) |
18 |
17
|
adantl |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) ∧ 𝑒 = { 𝑣 , 𝑛 } ) → ( { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ { 𝑣 , 𝑛 } ⊆ { 𝑣 , 𝑛 } ) ) |
19 |
|
ssidd |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) → { 𝑣 , 𝑛 } ⊆ { 𝑣 , 𝑛 } ) |
20 |
16 18 19
|
rspcedvd |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) → ∃ 𝑒 ∈ ran ( I ↾ 𝑃 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) |