| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cusgrrusgr.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  𝐺  ∈  ComplUSGraph )  →  𝐺  ∈  ComplUSGraph )  | 
						
						
							| 3 | 
							
								1
							 | 
							fusgrvtxfi | 
							⊢ ( 𝐺  ∈  FinUSGraph  →  𝑉  ∈  Fin )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  𝑉  ∈  Fin )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  𝐺  ∈  ComplUSGraph )  →  𝑉  ∈  Fin )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  𝑉  ≠  ∅ )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  𝐺  ∈  ComplUSGraph )  →  𝑉  ≠  ∅ )  | 
						
						
							| 8 | 
							
								1
							 | 
							cusgrrusgr | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 ) )  | 
						
						
							| 9 | 
							
								2 5 7 8
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  𝐺  ∈  ComplUSGraph )  →  𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ex | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  ∈  ComplUSGraph  →  𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 )  | 
						
						
							| 12 | 
							
								1 11
							 | 
							rusgrprop0 | 
							⊢ ( 𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 )  →  ( 𝐺  ∈  USGraph  ∧  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							simp3d | 
							⊢ ( 𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 )  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							vdiscusgr | 
							⊢ ( 𝐺  ∈  FinUSGraph  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 )  →  𝐺  ∈  ComplUSGraph ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 )  →  𝐺  ∈  ComplUSGraph ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							syl5 | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 )  →  𝐺  ∈  ComplUSGraph ) )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							impbid | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  ∈  ComplUSGraph  ↔  𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 ) ) )  |