| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cusgrres.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							cusgrres.e | 
							⊢ 𝐸  =  ( Edg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							cusgrres.f | 
							⊢ 𝐹  =  { 𝑒  ∈  𝐸  ∣  𝑁  ∉  𝑒 }  | 
						
						
							| 4 | 
							
								
							 | 
							cusgrres.s | 
							⊢ 𝑆  =  〈 ( 𝑉  ∖  { 𝑁 } ) ,  (  I   ↾  𝐹 ) 〉  | 
						
						
							| 5 | 
							
								
							 | 
							cusgrusgr | 
							⊢ ( 𝐺  ∈  ComplUSGraph  →  𝐺  ∈  USGraph )  | 
						
						
							| 6 | 
							
								1 2 3 4
							 | 
							usgrres1 | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  𝑆  ∈  USGraph )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylan | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑁  ∈  𝑉 )  →  𝑆  ∈  USGraph )  | 
						
						
							| 8 | 
							
								
							 | 
							iscusgr | 
							⊢ ( 𝐺  ∈  ComplUSGraph  ↔  ( 𝐺  ∈  USGraph  ∧  𝐺  ∈  ComplGraph ) )  | 
						
						
							| 9 | 
							
								
							 | 
							usgrupgr | 
							⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UPGraph )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐺  ∈  ComplGraph )  →  𝐺  ∈  UPGraph )  | 
						
						
							| 11 | 
							
								10
							 | 
							anim1i | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐺  ∈  ComplGraph )  ∧  𝑁  ∈  𝑉 )  →  ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							anim1i | 
							⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐺  ∈  ComplGraph )  ∧  𝑁  ∈  𝑉 )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  | 
						
						
							| 13 | 
							
								1
							 | 
							iscplgr | 
							⊢ ( 𝐺  ∈  USGraph  →  ( 𝐺  ∈  ComplGraph  ↔  ∀ 𝑛  ∈  𝑉 𝑛  ∈  ( UnivVtx ‘ 𝐺 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  →  𝑣  ∈  𝑉 )  | 
						
						
							| 15 | 
							
								14
							 | 
							ad2antll | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝑁  ∈  𝑉  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  →  𝑣  ∈  𝑉 )  | 
						
						
							| 16 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑛  =  𝑣  →  ( 𝑛  ∈  ( UnivVtx ‘ 𝐺 )  ↔  𝑣  ∈  ( UnivVtx ‘ 𝐺 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rspcv | 
							⊢ ( 𝑣  ∈  𝑉  →  ( ∀ 𝑛  ∈  𝑉 𝑛  ∈  ( UnivVtx ‘ 𝐺 )  →  𝑣  ∈  ( UnivVtx ‘ 𝐺 ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝑁  ∈  𝑉  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  →  ( ∀ 𝑛  ∈  𝑉 𝑛  ∈  ( UnivVtx ‘ 𝐺 )  →  𝑣  ∈  ( UnivVtx ‘ 𝐺 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							ex | 
							⊢ ( 𝐺  ∈  USGraph  →  ( ( 𝑁  ∈  𝑉  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  ( ∀ 𝑛  ∈  𝑉 𝑛  ∈  ( UnivVtx ‘ 𝐺 )  →  𝑣  ∈  ( UnivVtx ‘ 𝐺 ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							com23 | 
							⊢ ( 𝐺  ∈  USGraph  →  ( ∀ 𝑛  ∈  𝑉 𝑛  ∈  ( UnivVtx ‘ 𝐺 )  →  ( ( 𝑁  ∈  𝑉  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  𝑣  ∈  ( UnivVtx ‘ 𝐺 ) ) ) )  | 
						
						
							| 21 | 
							
								13 20
							 | 
							sylbid | 
							⊢ ( 𝐺  ∈  USGraph  →  ( 𝐺  ∈  ComplGraph  →  ( ( 𝑁  ∈  𝑉  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  𝑣  ∈  ( UnivVtx ‘ 𝐺 ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							imp | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐺  ∈  ComplGraph )  →  ( ( 𝑁  ∈  𝑉  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  𝑣  ∈  ( UnivVtx ‘ 𝐺 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							impl | 
							⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐺  ∈  ComplGraph )  ∧  𝑁  ∈  𝑉 )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  𝑣  ∈  ( UnivVtx ‘ 𝐺 ) )  | 
						
						
							| 24 | 
							
								1 2 3 4
							 | 
							uvtxupgrres | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  ( 𝑣  ∈  ( UnivVtx ‘ 𝐺 )  →  𝑣  ∈  ( UnivVtx ‘ 𝑆 ) ) )  | 
						
						
							| 25 | 
							
								12 23 24
							 | 
							sylc | 
							⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐺  ∈  ComplGraph )  ∧  𝑁  ∈  𝑉 )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  𝑣  ∈  ( UnivVtx ‘ 𝑆 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							ralrimiva | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐺  ∈  ComplGraph )  ∧  𝑁  ∈  𝑉 )  →  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑣  ∈  ( UnivVtx ‘ 𝑆 ) )  | 
						
						
							| 27 | 
							
								8 26
							 | 
							sylanb | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑁  ∈  𝑉 )  →  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑣  ∈  ( UnivVtx ‘ 𝑆 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							opex | 
							⊢ 〈 ( 𝑉  ∖  { 𝑁 } ) ,  (  I   ↾  𝐹 ) 〉  ∈  V  | 
						
						
							| 29 | 
							
								4 28
							 | 
							eqeltri | 
							⊢ 𝑆  ∈  V  | 
						
						
							| 30 | 
							
								1 2 3 4
							 | 
							upgrres1lem2 | 
							⊢ ( Vtx ‘ 𝑆 )  =  ( 𝑉  ∖  { 𝑁 } )  | 
						
						
							| 31 | 
							
								30
							 | 
							eqcomi | 
							⊢ ( 𝑉  ∖  { 𝑁 } )  =  ( Vtx ‘ 𝑆 )  | 
						
						
							| 32 | 
							
								31
							 | 
							iscplgr | 
							⊢ ( 𝑆  ∈  V  →  ( 𝑆  ∈  ComplGraph  ↔  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑣  ∈  ( UnivVtx ‘ 𝑆 ) ) )  | 
						
						
							| 33 | 
							
								29 32
							 | 
							mp1i | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑆  ∈  ComplGraph  ↔  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑣  ∈  ( UnivVtx ‘ 𝑆 ) ) )  | 
						
						
							| 34 | 
							
								27 33
							 | 
							mpbird | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑁  ∈  𝑉 )  →  𝑆  ∈  ComplGraph )  | 
						
						
							| 35 | 
							
								
							 | 
							iscusgr | 
							⊢ ( 𝑆  ∈  ComplUSGraph  ↔  ( 𝑆  ∈  USGraph  ∧  𝑆  ∈  ComplGraph ) )  | 
						
						
							| 36 | 
							
								7 34 35
							 | 
							sylanbrc | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑁  ∈  𝑉 )  →  𝑆  ∈  ComplUSGraph )  |