| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cusgrrusgr.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							cusgrusgr | 
							⊢ ( 𝐺  ∈  ComplUSGraph  →  𝐺  ∈  USGraph )  | 
						
						
							| 3 | 
							
								2
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝐺  ∈  USGraph )  | 
						
						
							| 4 | 
							
								
							 | 
							hashnncl | 
							⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  ↔  𝑉  ≠  ∅ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							nnm1nn0 | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0 )  | 
						
						
							| 6 | 
							
								5
							 | 
							nn0xnn0d | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0* )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							biimtrrdi | 
							⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0* ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							imp | 
							⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0* )  | 
						
						
							| 9 | 
							
								8
							 | 
							3adant1 | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0* )  | 
						
						
							| 10 | 
							
								
							 | 
							cusgrcplgr | 
							⊢ ( 𝐺  ∈  ComplUSGraph  →  𝐺  ∈  ComplGraph )  | 
						
						
							| 11 | 
							
								10
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝐺  ∈  ComplGraph )  | 
						
						
							| 12 | 
							
								1
							 | 
							nbcplgr | 
							⊢ ( ( 𝐺  ∈  ComplGraph  ∧  𝑣  ∈  𝑉 )  →  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							sylan | 
							⊢ ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  →  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ralrimiva | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ∀ 𝑣  ∈  𝑉 ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) )  | 
						
						
							| 15 | 
							
								3
							 | 
							anim1i | 
							⊢ ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  →  ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) )  →  ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 ) )  | 
						
						
							| 17 | 
							
								1
							 | 
							hashnbusgrvd | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							⊢ ( ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fveq2 | 
							⊢ ( ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ♯ ‘ ( 𝑉  ∖  { 𝑣 } ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							hashdifsn | 
							⊢ ( ( 𝑉  ∈  Fin  ∧  𝑣  ∈  𝑉 )  →  ( ♯ ‘ ( 𝑉  ∖  { 𝑣 } ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							3ad2antl2 | 
							⊢ ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  →  ( ♯ ‘ ( 𝑉  ∖  { 𝑣 } ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							sylan9eqr | 
							⊢ ( ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) )  | 
						
						
							| 23 | 
							
								18 22
							 | 
							eqtr3d | 
							⊢ ( ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ex | 
							⊢ ( ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ralimdva | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝑉  ∖  { 𝑣 } )  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) )  | 
						
						
							| 26 | 
							
								14 25
							 | 
							mpd | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝐺  ∈  ComplUSGraph )  | 
						
						
							| 28 | 
							
								
							 | 
							ovex | 
							⊢ ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  V  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 )  | 
						
						
							| 30 | 
							
								1 29
							 | 
							isrusgr0 | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  V )  →  ( 𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 )  ↔  ( 𝐺  ∈  USGraph  ∧  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) ) )  | 
						
						
							| 31 | 
							
								27 28 30
							 | 
							sylancl | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 )  ↔  ( 𝐺  ∈  USGraph  ∧  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) ) )  | 
						
						
							| 32 | 
							
								3 9 26 31
							 | 
							mpbir3and | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝐺  RegUSGraph  ( ( ♯ ‘ 𝑉 )  −  1 ) )  |