Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrrusgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
cusgrusgr |
⊢ ( 𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → 𝐺 ∈ USGraph ) |
4 |
|
hashnncl |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) ∈ ℕ ↔ 𝑉 ≠ ∅ ) ) |
5 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0 ) |
6 |
5
|
nn0xnn0d |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0* ) |
7 |
4 6
|
syl6bir |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 ≠ ∅ → ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0* ) ) |
8 |
7
|
imp |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0* ) |
9 |
8
|
3adant1 |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0* ) |
10 |
|
cusgrcplgr |
⊢ ( 𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → 𝐺 ∈ ComplGraph ) |
12 |
1
|
nbcplgr |
⊢ ( ( 𝐺 ∈ ComplGraph ∧ 𝑣 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝑉 ∖ { 𝑣 } ) ) |
13 |
11 12
|
sylan |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝑉 ∖ { 𝑣 } ) ) |
14 |
13
|
ralrimiva |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ∀ 𝑣 ∈ 𝑉 ( 𝐺 NeighbVtx 𝑣 ) = ( 𝑉 ∖ { 𝑣 } ) ) |
15 |
3
|
anim1i |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) ) |
16 |
15
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝐺 NeighbVtx 𝑣 ) = ( 𝑉 ∖ { 𝑣 } ) ) → ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) ) |
17 |
1
|
hashnbusgrvd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) |
18 |
16 17
|
syl |
⊢ ( ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝐺 NeighbVtx 𝑣 ) = ( 𝑉 ∖ { 𝑣 } ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) |
19 |
|
fveq2 |
⊢ ( ( 𝐺 NeighbVtx 𝑣 ) = ( 𝑉 ∖ { 𝑣 } ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = ( ♯ ‘ ( 𝑉 ∖ { 𝑣 } ) ) ) |
20 |
|
hashdifsn |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑣 ∈ 𝑉 ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑣 } ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
21 |
20
|
3ad2antl2 |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝑣 ∈ 𝑉 ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑣 } ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
22 |
19 21
|
sylan9eqr |
⊢ ( ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝐺 NeighbVtx 𝑣 ) = ( 𝑉 ∖ { 𝑣 } ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
23 |
18 22
|
eqtr3d |
⊢ ( ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝐺 NeighbVtx 𝑣 ) = ( 𝑉 ∖ { 𝑣 } ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
24 |
23
|
ex |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝐺 NeighbVtx 𝑣 ) = ( 𝑉 ∖ { 𝑣 } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) |
25 |
24
|
ralimdva |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝑉 ( 𝐺 NeighbVtx 𝑣 ) = ( 𝑉 ∖ { 𝑣 } ) → ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) |
26 |
14 25
|
mpd |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
27 |
|
simp1 |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → 𝐺 ∈ ComplUSGraph ) |
28 |
|
ovex |
⊢ ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ V |
29 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
30 |
1 29
|
isrusgr0 |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ V ) → ( 𝐺 RegUSGraph ( ( ♯ ‘ 𝑉 ) − 1 ) ↔ ( 𝐺 ∈ USGraph ∧ ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) ) |
31 |
27 28 30
|
sylancl |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐺 RegUSGraph ( ( ♯ ‘ 𝑉 ) − 1 ) ↔ ( 𝐺 ∈ USGraph ∧ ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) ) |
32 |
3 9 26 31
|
mpbir3and |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → 𝐺 RegUSGraph ( ( ♯ ‘ 𝑉 ) − 1 ) ) |