Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrsizeindb0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
cusgrsizeindb0.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
4 |
2 3
|
eqtri |
⊢ 𝐸 = ran ( iEdg ‘ 𝐺 ) |
5 |
4
|
a1i |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ) → 𝐸 = ran ( iEdg ‘ 𝐺 ) ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ) → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ ran ( iEdg ‘ 𝐺 ) ) ) |
7 |
1
|
opeq1i |
⊢ 〈 𝑉 , ( iEdg ‘ 𝐺 ) 〉 = 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 |
8 |
|
cusgrop |
⊢ ( 𝐺 ∈ ComplUSGraph → 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ∈ ComplUSGraph ) |
9 |
7 8
|
eqeltrid |
⊢ ( 𝐺 ∈ ComplUSGraph → 〈 𝑉 , ( iEdg ‘ 𝐺 ) 〉 ∈ ComplUSGraph ) |
10 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
11 |
|
fvex |
⊢ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∈ V |
12 |
|
rabexg |
⊢ ( ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∈ V → { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ∈ V ) |
13 |
12
|
resiexd |
⊢ ( ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∈ V → ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ∈ V ) |
14 |
11 13
|
ax-mp |
⊢ ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ∈ V |
15 |
|
rneq |
⊢ ( 𝑒 = ( iEdg ‘ 𝐺 ) → ran 𝑒 = ran ( iEdg ‘ 𝐺 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝑒 = ( iEdg ‘ 𝐺 ) → ( ♯ ‘ ran 𝑒 ) = ( ♯ ‘ ran ( iEdg ‘ 𝐺 ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑣 = 𝑉 → ( ♯ ‘ 𝑣 ) = ( ♯ ‘ 𝑉 ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝑣 = 𝑉 → ( ( ♯ ‘ 𝑣 ) C 2 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) |
19 |
16 18
|
eqeqan12rd |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( ( ♯ ‘ ran 𝑒 ) = ( ( ♯ ‘ 𝑣 ) C 2 ) ↔ ( ♯ ‘ ran ( iEdg ‘ 𝐺 ) ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) |
20 |
|
rneq |
⊢ ( 𝑒 = 𝑓 → ran 𝑒 = ran 𝑓 ) |
21 |
20
|
fveq2d |
⊢ ( 𝑒 = 𝑓 → ( ♯ ‘ ran 𝑒 ) = ( ♯ ‘ ran 𝑓 ) ) |
22 |
|
fveq2 |
⊢ ( 𝑣 = 𝑤 → ( ♯ ‘ 𝑣 ) = ( ♯ ‘ 𝑤 ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝑣 = 𝑤 → ( ( ♯ ‘ 𝑣 ) C 2 ) = ( ( ♯ ‘ 𝑤 ) C 2 ) ) |
24 |
21 23
|
eqeqan12rd |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( ( ♯ ‘ ran 𝑒 ) = ( ( ♯ ‘ 𝑣 ) C 2 ) ↔ ( ♯ ‘ ran 𝑓 ) = ( ( ♯ ‘ 𝑤 ) C 2 ) ) ) |
25 |
|
vex |
⊢ 𝑣 ∈ V |
26 |
|
vex |
⊢ 𝑒 ∈ V |
27 |
25 26
|
opvtxfvi |
⊢ ( Vtx ‘ 〈 𝑣 , 𝑒 〉 ) = 𝑣 |
28 |
27
|
eqcomi |
⊢ 𝑣 = ( Vtx ‘ 〈 𝑣 , 𝑒 〉 ) |
29 |
|
eqid |
⊢ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) = ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) |
30 |
|
eqid |
⊢ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } = { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } |
31 |
|
eqid |
⊢ 〈 ( 𝑣 ∖ { 𝑛 } ) , ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) 〉 = 〈 ( 𝑣 ∖ { 𝑛 } ) , ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) 〉 |
32 |
28 29 30 31
|
cusgrres |
⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ 𝑛 ∈ 𝑣 ) → 〈 ( 𝑣 ∖ { 𝑛 } ) , ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) 〉 ∈ ComplUSGraph ) |
33 |
|
rneq |
⊢ ( 𝑓 = ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) → ran 𝑓 = ran ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) |
34 |
33
|
fveq2d |
⊢ ( 𝑓 = ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) → ( ♯ ‘ ran 𝑓 ) = ( ♯ ‘ ran ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) → ( ♯ ‘ ran 𝑓 ) = ( ♯ ‘ ran ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) ) |
36 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) ) |
38 |
37
|
oveq1d |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) → ( ( ♯ ‘ 𝑤 ) C 2 ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) C 2 ) ) |
39 |
35 38
|
eqeq12d |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) → ( ( ♯ ‘ ran 𝑓 ) = ( ( ♯ ‘ 𝑤 ) C 2 ) ↔ ( ♯ ‘ ran ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) C 2 ) ) ) |
40 |
|
edgopval |
⊢ ( ( 𝑣 ∈ V ∧ 𝑒 ∈ V ) → ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) = ran 𝑒 ) |
41 |
40
|
el2v |
⊢ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) = ran 𝑒 |
42 |
41
|
a1i |
⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = 0 ) → ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) = ran 𝑒 ) |
43 |
42
|
eqcomd |
⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = 0 ) → ran 𝑒 = ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ) |
44 |
43
|
fveq2d |
⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = 0 ) → ( ♯ ‘ ran 𝑒 ) = ( ♯ ‘ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ) ) |
45 |
|
cusgrusgr |
⊢ ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph → 〈 𝑣 , 𝑒 〉 ∈ USGraph ) |
46 |
|
usgruhgr |
⊢ ( 〈 𝑣 , 𝑒 〉 ∈ USGraph → 〈 𝑣 , 𝑒 〉 ∈ UHGraph ) |
47 |
45 46
|
syl |
⊢ ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph → 〈 𝑣 , 𝑒 〉 ∈ UHGraph ) |
48 |
28 29
|
cusgrsizeindb0 |
⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ UHGraph ∧ ( ♯ ‘ 𝑣 ) = 0 ) → ( ♯ ‘ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ) = ( ( ♯ ‘ 𝑣 ) C 2 ) ) |
49 |
47 48
|
sylan |
⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = 0 ) → ( ♯ ‘ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ) = ( ( ♯ ‘ 𝑣 ) C 2 ) ) |
50 |
44 49
|
eqtrd |
⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = 0 ) → ( ♯ ‘ ran 𝑒 ) = ( ( ♯ ‘ 𝑣 ) C 2 ) ) |
51 |
|
rnresi |
⊢ ran ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) = { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } |
52 |
51
|
fveq2i |
⊢ ( ♯ ‘ ran ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) = ( ♯ ‘ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) |
53 |
41
|
a1i |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) → ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) = ran 𝑒 ) |
54 |
53
|
rabeqdv |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) → { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } = { 𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐 } ) |
55 |
54
|
fveq2d |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) → ( ♯ ‘ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) = ( ♯ ‘ { 𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐 } ) ) |
56 |
52 55
|
syl5eq |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) → ( ♯ ‘ ran ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) = ( ♯ ‘ { 𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐 } ) ) |
57 |
56
|
eqeq1d |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) → ( ( ♯ ‘ ran ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) C 2 ) ↔ ( ♯ ‘ { 𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐 } ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) C 2 ) ) ) |
58 |
57
|
biimpd |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) → ( ( ♯ ‘ ran ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) C 2 ) → ( ♯ ‘ { 𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐 } ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) C 2 ) ) ) |
59 |
58
|
imdistani |
⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ ( ♯ ‘ ran ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) C 2 ) ) → ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ ( ♯ ‘ { 𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐 } ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) C 2 ) ) ) |
60 |
41
|
eqcomi |
⊢ ran 𝑒 = ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) |
61 |
|
eqid |
⊢ { 𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐 } = { 𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐 } |
62 |
28 60 61
|
cusgrsize2inds |
⊢ ( ( 𝑦 + 1 ) ∈ ℕ0 → ( ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) → ( ( ♯ ‘ { 𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐 } ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) C 2 ) → ( ♯ ‘ ran 𝑒 ) = ( ( ♯ ‘ 𝑣 ) C 2 ) ) ) ) |
63 |
62
|
imp31 |
⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ ( ♯ ‘ { 𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐 } ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) C 2 ) ) → ( ♯ ‘ ran 𝑒 ) = ( ( ♯ ‘ 𝑣 ) C 2 ) ) |
64 |
59 63
|
syl |
⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ ( ♯ ‘ ran ( I ↾ { 𝑐 ∈ ( Edg ‘ 〈 𝑣 , 𝑒 〉 ) ∣ 𝑛 ∉ 𝑐 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) C 2 ) ) → ( ♯ ‘ ran 𝑒 ) = ( ( ♯ ‘ 𝑣 ) C 2 ) ) |
65 |
10 14 19 24 32 39 50 64
|
opfi1ind |
⊢ ( ( 〈 𝑉 , ( iEdg ‘ 𝐺 ) 〉 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ) → ( ♯ ‘ ran ( iEdg ‘ 𝐺 ) ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) |
66 |
9 65
|
sylan |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ) → ( ♯ ‘ ran ( iEdg ‘ 𝐺 ) ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) |
67 |
6 66
|
eqtrd |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) |