| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cusgrsizeindb0.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							cusgrsizeindb0.e | 
							⊢ 𝐸  =  ( Edg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							cusgrsizeinds.f | 
							⊢ 𝐹  =  { 𝑒  ∈  𝐸  ∣  𝑁  ∉  𝑒 }  | 
						
						
							| 4 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝑉  ∈  V  | 
						
						
							| 5 | 
							
								
							 | 
							hashnn0n0nn | 
							⊢ ( ( ( 𝑉  ∈  V  ∧  𝑌  ∈  ℕ0 )  ∧  ( ( ♯ ‘ 𝑉 )  =  𝑌  ∧  𝑁  ∈  𝑉 ) )  →  𝑌  ∈  ℕ )  | 
						
						
							| 6 | 
							
								5
							 | 
							anassrs | 
							⊢ ( ( ( ( 𝑉  ∈  V  ∧  𝑌  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  →  𝑌  ∈  ℕ )  | 
						
						
							| 7 | 
							
								
							 | 
							simplll | 
							⊢ ( ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  ∧  𝑌  ∈  ℕ )  →  𝑉  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  ∧  𝑌  ∈  ℕ )  →  𝑁  ∈  𝑉 )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑌  =  ( ♯ ‘ 𝑉 )  →  ( 𝑌  ∈  ℕ  ↔  ( ♯ ‘ 𝑉 )  ∈  ℕ ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqcoms | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  𝑌  →  ( 𝑌  ∈  ℕ  ↔  ( ♯ ‘ 𝑉 )  ∈  ℕ ) )  | 
						
						
							| 11 | 
							
								
							 | 
							nnm1nn0 | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							biimtrdi | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  𝑌  →  ( 𝑌  ∈  ℕ  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  →  ( 𝑌  ∈  ℕ  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							imp | 
							⊢ ( ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  ∧  𝑌  ∈  ℕ )  →  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0 )  | 
						
						
							| 15 | 
							
								
							 | 
							nncn | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ♯ ‘ 𝑉 )  ∈  ℂ )  | 
						
						
							| 16 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  1  ∈  ℂ )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							npcand | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  1 )  =  ( ♯ ‘ 𝑉 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							eqcomd | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ♯ ‘ 𝑉 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  1 ) )  | 
						
						
							| 19 | 
							
								10 18
							 | 
							biimtrdi | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  𝑌  →  ( 𝑌  ∈  ℕ  →  ( ♯ ‘ 𝑉 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  1 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  →  ( 𝑌  ∈  ℕ  →  ( ♯ ‘ 𝑉 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  1 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							imp | 
							⊢ ( ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  ∧  𝑌  ∈  ℕ )  →  ( ♯ ‘ 𝑉 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  1 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							hashdifsnp1 | 
							⊢ ( ( 𝑉  ∈  V  ∧  𝑁  ∈  𝑉  ∧  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑉 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  1 )  →  ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							imp | 
							⊢ ( ( ( 𝑉  ∈  V  ∧  𝑁  ∈  𝑉  ∧  ( ( ♯ ‘ 𝑉 )  −  1 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑉 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  1 ) )  →  ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) )  | 
						
						
							| 24 | 
							
								7 8 14 21 23
							 | 
							syl31anc | 
							⊢ ( ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  ∧  𝑌  ∈  ℕ )  →  ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 )  →  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							eqeq2d | 
							⊢ ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 )  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  ↔  ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 ) ) )  | 
						
						
							| 27 | 
							
								10
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  →  ( 𝑌  ∈  ℕ  ↔  ( ♯ ‘ 𝑉 )  ∈  ℕ ) )  | 
						
						
							| 28 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ♯ ‘ 𝑉 )  ∈  ℕ0 )  | 
						
						
							| 29 | 
							
								
							 | 
							hashclb | 
							⊢ ( 𝑉  ∈  V  →  ( 𝑉  ∈  Fin  ↔  ( ♯ ‘ 𝑉 )  ∈  ℕ0 ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							syl5ibrcom | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( 𝑉  ∈  V  →  𝑉  ∈  Fin ) )  | 
						
						
							| 31 | 
							
								1 2 3
							 | 
							cusgrsizeinds | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑁  ∈  𝑉 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							oveq2 | 
							⊢ ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ♯ ‘ 𝐹 ) )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							eqeq2d | 
							⊢ ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ( ♯ ‘ 𝐸 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ♯ ‘ 𝐹 ) )  ↔  ( ♯ ‘ 𝐸 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 ) ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantl | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ  ∧  ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 ) )  →  ( ( ♯ ‘ 𝐸 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ♯ ‘ 𝐹 ) )  ↔  ( ♯ ‘ 𝐸 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 ) ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							bcn2m1 | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 ) )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							eqeq2d | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝐸 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 ) )  ↔  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							biimpd | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝐸 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 ) )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ  ∧  ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 ) )  →  ( ( ♯ ‘ 𝐸 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 ) )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) )  | 
						
						
							| 39 | 
							
								34 38
							 | 
							sylbid | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ  ∧  ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 ) )  →  ( ( ♯ ‘ 𝐸 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							ex | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ( ♯ ‘ 𝐸 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							com3r | 
							⊢ ( ( ♯ ‘ 𝐸 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 )  +  ( ♯ ‘ 𝐹 ) )  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) )  | 
						
						
							| 42 | 
							
								31 41
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  𝑉  ∈  Fin  ∧  𝑁  ∈  𝑉 )  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							3exp | 
							⊢ ( 𝐺  ∈  ComplUSGraph  →  ( 𝑉  ∈  Fin  →  ( 𝑁  ∈  𝑉  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							com14 | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( 𝑉  ∈  Fin  →  ( 𝑁  ∈  𝑉  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) )  | 
						
						
							| 45 | 
							
								30 44
							 | 
							syldc | 
							⊢ ( 𝑉  ∈  V  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( 𝑁  ∈  𝑉  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							com23 | 
							⊢ ( 𝑉  ∈  V  →  ( 𝑁  ∈  𝑉  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantr | 
							⊢ ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  →  ( 𝑁  ∈  𝑉  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							imp | 
							⊢ ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) )  | 
						
						
							| 49 | 
							
								27 48
							 | 
							sylbid | 
							⊢ ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  →  ( 𝑌  ∈  ℕ  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							imp | 
							⊢ ( ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  ∧  𝑌  ∈  ℕ )  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							com13 | 
							⊢ ( ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝑉 )  −  1 ) C 2 )  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  ∧  𝑌  ∈  ℕ )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) )  | 
						
						
							| 52 | 
							
								26 51
							 | 
							biimtrdi | 
							⊢ ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 )  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  ∧  𝑌  ∈  ℕ )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							com24 | 
							⊢ ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) )  =  ( ( ♯ ‘ 𝑉 )  −  1 )  →  ( ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  ∧  𝑌  ∈  ℕ )  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) )  | 
						
						
							| 54 | 
							
								24 53
							 | 
							mpcom | 
							⊢ ( ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  ∧  𝑌  ∈  ℕ )  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							ex | 
							⊢ ( ( ( 𝑉  ∈  V  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  →  ( 𝑌  ∈  ℕ  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							adantllr | 
							⊢ ( ( ( ( 𝑉  ∈  V  ∧  𝑌  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  →  ( 𝑌  ∈  ℕ  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) )  | 
						
						
							| 57 | 
							
								6 56
							 | 
							mpd | 
							⊢ ( ( ( ( 𝑉  ∈  V  ∧  𝑌  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑉 )  =  𝑌 )  ∧  𝑁  ∈  𝑉 )  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							exp41 | 
							⊢ ( 𝑉  ∈  V  →  ( 𝑌  ∈  ℕ0  →  ( ( ♯ ‘ 𝑉 )  =  𝑌  →  ( 𝑁  ∈  𝑉  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							com25 | 
							⊢ ( 𝑉  ∈  V  →  ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝑉 )  =  𝑌  →  ( 𝑁  ∈  𝑉  →  ( 𝑌  ∈  ℕ0  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) ) )  | 
						
						
							| 60 | 
							
								4 59
							 | 
							ax-mp | 
							⊢ ( 𝐺  ∈  ComplUSGraph  →  ( ( ♯ ‘ 𝑉 )  =  𝑌  →  ( 𝑁  ∈  𝑉  →  ( 𝑌  ∈  ℕ0  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							3imp | 
							⊢ ( ( 𝐺  ∈  ComplUSGraph  ∧  ( ♯ ‘ 𝑉 )  =  𝑌  ∧  𝑁  ∈  𝑉 )  →  ( 𝑌  ∈  ℕ0  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							com12 | 
							⊢ ( 𝑌  ∈  ℕ0  →  ( ( 𝐺  ∈  ComplUSGraph  ∧  ( ♯ ‘ 𝑉 )  =  𝑌  ∧  𝑁  ∈  𝑉 )  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑁 } ) ) C 2 )  →  ( ♯ ‘ 𝐸 )  =  ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) )  |