Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrsizeindb0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
cusgrsizeindb0.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
cusgrsizeinds.f |
⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } |
4 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
5 |
|
hashnn0n0nn |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝑌 ∈ ℕ0 ) ∧ ( ( ♯ ‘ 𝑉 ) = 𝑌 ∧ 𝑁 ∈ 𝑉 ) ) → 𝑌 ∈ ℕ ) |
6 |
5
|
anassrs |
⊢ ( ( ( ( 𝑉 ∈ V ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) → 𝑌 ∈ ℕ ) |
7 |
|
simplll |
⊢ ( ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑌 ∈ ℕ ) → 𝑉 ∈ V ) |
8 |
|
simplr |
⊢ ( ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑌 ∈ ℕ ) → 𝑁 ∈ 𝑉 ) |
9 |
|
eleq1 |
⊢ ( 𝑌 = ( ♯ ‘ 𝑉 ) → ( 𝑌 ∈ ℕ ↔ ( ♯ ‘ 𝑉 ) ∈ ℕ ) ) |
10 |
9
|
eqcoms |
⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( 𝑌 ∈ ℕ ↔ ( ♯ ‘ 𝑉 ) ∈ ℕ ) ) |
11 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0 ) |
12 |
10 11
|
syl6bi |
⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( 𝑌 ∈ ℕ → ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0 ) ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝑌 ∈ ℕ → ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0 ) ) |
14 |
13
|
imp |
⊢ ( ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑌 ∈ ℕ ) → ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0 ) |
15 |
|
nncn |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ♯ ‘ 𝑉 ) ∈ ℂ ) |
16 |
|
1cnd |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → 1 ∈ ℂ ) |
17 |
15 16
|
npcand |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ( ♯ ‘ 𝑉 ) − 1 ) + 1 ) = ( ♯ ‘ 𝑉 ) ) |
18 |
17
|
eqcomd |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ♯ ‘ 𝑉 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + 1 ) ) |
19 |
10 18
|
syl6bi |
⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( 𝑌 ∈ ℕ → ( ♯ ‘ 𝑉 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + 1 ) ) ) |
20 |
19
|
ad2antlr |
⊢ ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝑌 ∈ ℕ → ( ♯ ‘ 𝑉 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + 1 ) ) ) |
21 |
20
|
imp |
⊢ ( ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑌 ∈ ℕ ) → ( ♯ ‘ 𝑉 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + 1 ) ) |
22 |
|
hashdifsnp1 |
⊢ ( ( 𝑉 ∈ V ∧ 𝑁 ∈ 𝑉 ∧ ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑉 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + 1 ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) |
23 |
22
|
imp |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝑁 ∈ 𝑉 ∧ ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + 1 ) ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
24 |
7 8 14 21 23
|
syl31anc |
⊢ ( ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑌 ∈ ℕ ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
25 |
|
oveq1 |
⊢ ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) ) |
26 |
25
|
eqeq2d |
⊢ ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) ↔ ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) ) ) |
27 |
10
|
ad2antlr |
⊢ ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝑌 ∈ ℕ ↔ ( ♯ ‘ 𝑉 ) ∈ ℕ ) ) |
28 |
|
nnnn0 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
29 |
|
hashclb |
⊢ ( 𝑉 ∈ V → ( 𝑉 ∈ Fin ↔ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) ) |
30 |
28 29
|
syl5ibrcom |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( 𝑉 ∈ V → 𝑉 ∈ Fin ) ) |
31 |
1 2 3
|
cusgrsizeinds |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ♯ ‘ 𝐹 ) ) ) |
32 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ♯ ‘ 𝐹 ) ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) ) ) |
33 |
32
|
eqeq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ♯ ‘ 𝐹 ) ) ↔ ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ ∧ ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) ) → ( ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ♯ ‘ 𝐹 ) ) ↔ ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) ) ) ) |
35 |
|
bcn2m1 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) |
36 |
35
|
eqeq2d |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) ) ↔ ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) |
37 |
36
|
biimpd |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) |
38 |
37
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ ∧ ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) ) → ( ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) |
39 |
34 38
|
sylbid |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ ∧ ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) ) → ( ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) |
40 |
39
|
ex |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) |
41 |
40
|
com3r |
⊢ ( ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) |
42 |
31 41
|
syl |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) |
43 |
42
|
3exp |
⊢ ( 𝐺 ∈ ComplUSGraph → ( 𝑉 ∈ Fin → ( 𝑁 ∈ 𝑉 → ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) ) |
44 |
43
|
com14 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( 𝑉 ∈ Fin → ( 𝑁 ∈ 𝑉 → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) ) |
45 |
30 44
|
syldc |
⊢ ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( 𝑁 ∈ 𝑉 → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) ) |
46 |
45
|
com23 |
⊢ ( 𝑉 ∈ V → ( 𝑁 ∈ 𝑉 → ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) → ( 𝑁 ∈ 𝑉 → ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) ) |
48 |
47
|
imp |
⊢ ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) |
49 |
27 48
|
sylbid |
⊢ ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝑌 ∈ ℕ → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) |
50 |
49
|
imp |
⊢ ( ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑌 ∈ ℕ ) → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) |
51 |
50
|
com13 |
⊢ ( ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) C 2 ) → ( 𝐺 ∈ ComplUSGraph → ( ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑌 ∈ ℕ ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) |
52 |
26 51
|
syl6bi |
⊢ ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) → ( 𝐺 ∈ ComplUSGraph → ( ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑌 ∈ ℕ ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) |
53 |
52
|
com24 |
⊢ ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑌 ∈ ℕ ) → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) |
54 |
24 53
|
mpcom |
⊢ ( ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑌 ∈ ℕ ) → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) |
55 |
54
|
ex |
⊢ ( ( ( 𝑉 ∈ V ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝑌 ∈ ℕ → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) |
56 |
55
|
adantllr |
⊢ ( ( ( ( 𝑉 ∈ V ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝑌 ∈ ℕ → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) |
57 |
6 56
|
mpd |
⊢ ( ( ( ( 𝑉 ∈ V ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) |
58 |
57
|
exp41 |
⊢ ( 𝑉 ∈ V → ( 𝑌 ∈ ℕ0 → ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( 𝑁 ∈ 𝑉 → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) ) ) |
59 |
58
|
com25 |
⊢ ( 𝑉 ∈ V → ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( 𝑁 ∈ 𝑉 → ( 𝑌 ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) ) ) |
60 |
4 59
|
ax-mp |
⊢ ( 𝐺 ∈ ComplUSGraph → ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( 𝑁 ∈ 𝑉 → ( 𝑌 ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) ) ) |
61 |
60
|
3imp |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ∧ 𝑁 ∈ 𝑉 ) → ( 𝑌 ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) |
62 |
61
|
com12 |
⊢ ( 𝑌 ∈ ℕ0 → ( ( 𝐺 ∈ ComplUSGraph ∧ ( ♯ ‘ 𝑉 ) = 𝑌 ∧ 𝑁 ∈ 𝑉 ) → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) C 2 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) ) ) |