Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrsizeindb0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
cusgrsizeindb0.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
uhgr0vsize0 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( ♯ ‘ 𝐸 ) = 0 ) |
4 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ( ( ♯ ‘ 𝑉 ) C 2 ) = ( 0 C 2 ) ) |
5 |
|
2nn |
⊢ 2 ∈ ℕ |
6 |
|
bc0k |
⊢ ( 2 ∈ ℕ → ( 0 C 2 ) = 0 ) |
7 |
5 6
|
ax-mp |
⊢ ( 0 C 2 ) = 0 |
8 |
4 7
|
eqtr2di |
⊢ ( ( ♯ ‘ 𝑉 ) = 0 → 0 = ( ( ♯ ‘ 𝑉 ) C 2 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → 0 = ( ( ♯ ‘ 𝑉 ) C 2 ) ) |
10 |
3 9
|
eqtrd |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑉 ) C 2 ) ) |