Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrsizeindb0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
cusgrsizeindb0.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
cusgrsizeinds.f |
⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } |
4 |
|
cusgrusgr |
⊢ ( 𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph ) |
5 |
1
|
isfusgr |
⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
6 |
|
fusgrfis |
⊢ ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin ) |
7 |
5 6
|
sylbir |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) → ( Edg ‘ 𝐺 ) ∈ Fin ) |
8 |
7
|
a1d |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) → ( 𝑁 ∈ 𝑉 → ( Edg ‘ 𝐺 ) ∈ Fin ) ) |
9 |
8
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( 𝑉 ∈ Fin → ( 𝑁 ∈ 𝑉 → ( Edg ‘ 𝐺 ) ∈ Fin ) ) ) |
10 |
4 9
|
syl |
⊢ ( 𝐺 ∈ ComplUSGraph → ( 𝑉 ∈ Fin → ( 𝑁 ∈ 𝑉 → ( Edg ‘ 𝐺 ) ∈ Fin ) ) ) |
11 |
10
|
3imp |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) → ( Edg ‘ 𝐺 ) ∈ Fin ) |
12 |
|
eqid |
⊢ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } |
13 |
12 3
|
elnelun |
⊢ ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∪ 𝐹 ) = 𝐸 |
14 |
13
|
eqcomi |
⊢ 𝐸 = ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∪ 𝐹 ) |
15 |
14
|
fveq2i |
⊢ ( ♯ ‘ 𝐸 ) = ( ♯ ‘ ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∪ 𝐹 ) ) |
16 |
15
|
a1i |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) ∧ ( Edg ‘ 𝐺 ) ∈ Fin ) → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∪ 𝐹 ) ) ) |
17 |
2
|
eqcomi |
⊢ ( Edg ‘ 𝐺 ) = 𝐸 |
18 |
17
|
eleq1i |
⊢ ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ 𝐸 ∈ Fin ) |
19 |
|
rabfi |
⊢ ( 𝐸 ∈ Fin → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ Fin ) |
20 |
18 19
|
sylbi |
⊢ ( ( Edg ‘ 𝐺 ) ∈ Fin → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ Fin ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) ∧ ( Edg ‘ 𝐺 ) ∈ Fin ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ Fin ) |
22 |
4
|
anim1i |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ) → ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
23 |
22 5
|
sylibr |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ) → 𝐺 ∈ FinUSGraph ) |
24 |
1 2 3
|
usgrfilem |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ∈ Fin ↔ 𝐹 ∈ Fin ) ) |
25 |
23 24
|
stoic3 |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ∈ Fin ↔ 𝐹 ∈ Fin ) ) |
26 |
18 25
|
syl5bb |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ 𝐹 ∈ Fin ) ) |
27 |
26
|
biimpa |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) ∧ ( Edg ‘ 𝐺 ) ∈ Fin ) → 𝐹 ∈ Fin ) |
28 |
12 3
|
elneldisj |
⊢ ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∩ 𝐹 ) = ∅ |
29 |
28
|
a1i |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) ∧ ( Edg ‘ 𝐺 ) ∈ Fin ) → ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∩ 𝐹 ) = ∅ ) |
30 |
|
hashun |
⊢ ( ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ Fin ∧ 𝐹 ∈ Fin ∧ ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∩ 𝐹 ) = ∅ ) → ( ♯ ‘ ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∪ 𝐹 ) ) = ( ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) + ( ♯ ‘ 𝐹 ) ) ) |
31 |
21 27 29 30
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) ∧ ( Edg ‘ 𝐺 ) ∈ Fin ) → ( ♯ ‘ ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∪ 𝐹 ) ) = ( ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) + ( ♯ ‘ 𝐹 ) ) ) |
32 |
1 2
|
cusgrsizeindslem |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) ∧ ( Edg ‘ 𝐺 ) ∈ Fin ) → ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
34 |
33
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) ∧ ( Edg ‘ 𝐺 ) ∈ Fin ) → ( ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) + ( ♯ ‘ 𝐹 ) ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ♯ ‘ 𝐹 ) ) ) |
35 |
16 31 34
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) ∧ ( Edg ‘ 𝐺 ) ∈ Fin ) → ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ♯ ‘ 𝐹 ) ) ) |
36 |
11 35
|
mpdan |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑉 ) − 1 ) + ( ♯ ‘ 𝐹 ) ) ) |