Metamath Proof Explorer


Theorem cuspcvg

Description: In a complete uniform space, any Cauchy filter C has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017)

Ref Expression
Hypotheses cuspcvg.1 𝐵 = ( Base ‘ 𝑊 )
cuspcvg.2 𝐽 = ( TopOpen ‘ 𝑊 )
Assertion cuspcvg ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 cuspcvg.1 𝐵 = ( Base ‘ 𝑊 )
2 cuspcvg.2 𝐽 = ( TopOpen ‘ 𝑊 )
3 eleq1 ( 𝑐 = 𝐶 → ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ↔ 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ) )
4 2 eqcomi ( TopOpen ‘ 𝑊 ) = 𝐽
5 4 a1i ( 𝑐 = 𝐶 → ( TopOpen ‘ 𝑊 ) = 𝐽 )
6 id ( 𝑐 = 𝐶𝑐 = 𝐶 )
7 5 6 oveq12d ( 𝑐 = 𝐶 → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) = ( 𝐽 fLim 𝐶 ) )
8 7 neeq1d ( 𝑐 = 𝐶 → ( ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ↔ ( 𝐽 fLim 𝐶 ) ≠ ∅ ) )
9 3 8 imbi12d ( 𝑐 = 𝐶 → ( ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ↔ ( 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ ) ) )
10 iscusp ( 𝑊 ∈ CUnifSp ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) )
11 10 simprbi ( 𝑊 ∈ CUnifSp → ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) )
12 11 adantr ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) )
13 simpr ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → 𝐶 ∈ ( Fil ‘ 𝐵 ) )
14 1 fveq2i ( Fil ‘ 𝐵 ) = ( Fil ‘ ( Base ‘ 𝑊 ) )
15 13 14 eleqtrdi ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → 𝐶 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) )
16 9 12 15 rspcdva ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ ) )
17 16 3impia ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ )
18 17 3com23 ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ )