Description: A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | cuspusp | ⊢ ( 𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusp | ⊢ ( 𝑊 ∈ CUnifSp ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) ) | |
2 | 1 | simplbi | ⊢ ( 𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp ) |