| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cuteq0.1 |
⊢ ( 𝜑 → 𝐴 <<s { 0s } ) |
| 2 |
|
cuteq0.2 |
⊢ ( 𝜑 → { 0s } <<s 𝐵 ) |
| 3 |
|
bday0s |
⊢ ( bday ‘ 0s ) = ∅ |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → ( bday ‘ 0s ) = ∅ ) |
| 5 |
|
0sno |
⊢ 0s ∈ No |
| 6 |
|
sneq |
⊢ ( 𝑦 = 0s → { 𝑦 } = { 0s } ) |
| 7 |
6
|
breq2d |
⊢ ( 𝑦 = 0s → ( 𝐴 <<s { 𝑦 } ↔ 𝐴 <<s { 0s } ) ) |
| 8 |
6
|
breq1d |
⊢ ( 𝑦 = 0s → ( { 𝑦 } <<s 𝐵 ↔ { 0s } <<s 𝐵 ) ) |
| 9 |
7 8
|
anbi12d |
⊢ ( 𝑦 = 0s → ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ↔ ( 𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ) ) ) |
| 10 |
|
fveqeq2 |
⊢ ( 𝑦 = 0s → ( ( bday ‘ 𝑦 ) = ∅ ↔ ( bday ‘ 0s ) = ∅ ) ) |
| 11 |
9 10
|
anbi12d |
⊢ ( 𝑦 = 0s → ( ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ∧ ( bday ‘ 𝑦 ) = ∅ ) ↔ ( ( 𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ) ∧ ( bday ‘ 0s ) = ∅ ) ) ) |
| 12 |
11
|
rspcev |
⊢ ( ( 0s ∈ No ∧ ( ( 𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ) ∧ ( bday ‘ 0s ) = ∅ ) ) → ∃ 𝑦 ∈ No ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ∧ ( bday ‘ 𝑦 ) = ∅ ) ) |
| 13 |
5 12
|
mpan |
⊢ ( ( ( 𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ) ∧ ( bday ‘ 0s ) = ∅ ) → ∃ 𝑦 ∈ No ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ∧ ( bday ‘ 𝑦 ) = ∅ ) ) |
| 14 |
1 2 4 13
|
syl21anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ No ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ∧ ( bday ‘ 𝑦 ) = ∅ ) ) |
| 15 |
|
bdayfn |
⊢ bday Fn No |
| 16 |
|
ssrab2 |
⊢ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ⊆ No |
| 17 |
|
fvelimab |
⊢ ( ( bday Fn No ∧ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ⊆ No ) → ( ∅ ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ↔ ∃ 𝑦 ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ( bday ‘ 𝑦 ) = ∅ ) ) |
| 18 |
15 16 17
|
mp2an |
⊢ ( ∅ ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ↔ ∃ 𝑦 ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ( bday ‘ 𝑦 ) = ∅ ) |
| 19 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
| 20 |
19
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 <<s { 𝑥 } ↔ 𝐴 <<s { 𝑦 } ) ) |
| 21 |
19
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( { 𝑥 } <<s 𝐵 ↔ { 𝑦 } <<s 𝐵 ) ) |
| 22 |
20 21
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) ↔ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ) ) |
| 23 |
22
|
rexrab |
⊢ ( ∃ 𝑦 ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ( bday ‘ 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ No ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ∧ ( bday ‘ 𝑦 ) = ∅ ) ) |
| 24 |
18 23
|
bitri |
⊢ ( ∅ ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ↔ ∃ 𝑦 ∈ No ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ∧ ( bday ‘ 𝑦 ) = ∅ ) ) |
| 25 |
14 24
|
sylibr |
⊢ ( 𝜑 → ∅ ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ) |
| 26 |
|
int0el |
⊢ ( ∅ ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) → ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) = ∅ ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) = ∅ ) |
| 28 |
3 27
|
eqtr4id |
⊢ ( 𝜑 → ( bday ‘ 0s ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ) |
| 29 |
5
|
elexi |
⊢ 0s ∈ V |
| 30 |
29
|
snnz |
⊢ { 0s } ≠ ∅ |
| 31 |
|
sslttr |
⊢ ( ( 𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ { 0s } ≠ ∅ ) → 𝐴 <<s 𝐵 ) |
| 32 |
30 31
|
mp3an3 |
⊢ ( ( 𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ) → 𝐴 <<s 𝐵 ) |
| 33 |
1 2 32
|
syl2anc |
⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) |
| 34 |
|
eqscut |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 0s ∈ No ) → ( ( 𝐴 |s 𝐵 ) = 0s ↔ ( 𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ ( bday ‘ 0s ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ) ) ) |
| 35 |
33 5 34
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 |s 𝐵 ) = 0s ↔ ( 𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ ( bday ‘ 0s ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ) ) ) |
| 36 |
1 2 28 35
|
mpbir3and |
⊢ ( 𝜑 → ( 𝐴 |s 𝐵 ) = 0s ) |