Metamath Proof Explorer


Theorem cutlt

Description: Eliminating all elements below a given element of a cut does not affect the cut. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses cutlt.1 ( 𝜑𝐿 <<s 𝑅 )
cutlt.2 ( 𝜑𝐴 = ( 𝐿 |s 𝑅 ) )
cutlt.3 ( 𝜑𝑋𝐿 )
Assertion cutlt ( 𝜑𝐴 = ( ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) |s 𝑅 ) )

Proof

Step Hyp Ref Expression
1 cutlt.1 ( 𝜑𝐿 <<s 𝑅 )
2 cutlt.2 ( 𝜑𝐴 = ( 𝐿 |s 𝑅 ) )
3 cutlt.3 ( 𝜑𝑋𝐿 )
4 ssltss1 ( 𝐿 <<s 𝑅𝐿 No )
5 1 4 syl ( 𝜑𝐿 No )
6 5 3 sseldd ( 𝜑𝑋 No )
7 snelpwi ( 𝑋 No → { 𝑋 } ∈ 𝒫 No )
8 6 7 syl ( 𝜑 → { 𝑋 } ∈ 𝒫 No )
9 ssltex1 ( 𝐿 <<s 𝑅𝐿 ∈ V )
10 rabexg ( 𝐿 ∈ V → { 𝑦𝐿𝑋 <s 𝑦 } ∈ V )
11 1 9 10 3syl ( 𝜑 → { 𝑦𝐿𝑋 <s 𝑦 } ∈ V )
12 ssrab2 { 𝑦𝐿𝑋 <s 𝑦 } ⊆ 𝐿
13 12 5 sstrid ( 𝜑 → { 𝑦𝐿𝑋 <s 𝑦 } ⊆ No )
14 11 13 elpwd ( 𝜑 → { 𝑦𝐿𝑋 <s 𝑦 } ∈ 𝒫 No )
15 pwuncl ( ( { 𝑋 } ∈ 𝒫 No ∧ { 𝑦𝐿𝑋 <s 𝑦 } ∈ 𝒫 No ) → ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) ∈ 𝒫 No )
16 8 14 15 syl2anc ( 𝜑 → ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) ∈ 𝒫 No )
17 ssltex2 ( 𝐿 <<s 𝑅𝑅 ∈ V )
18 1 17 syl ( 𝜑𝑅 ∈ V )
19 ssltss2 ( 𝐿 <<s 𝑅𝑅 No )
20 1 19 syl ( 𝜑𝑅 No )
21 18 20 elpwd ( 𝜑𝑅 ∈ 𝒫 No )
22 snidg ( 𝑋𝐿𝑋 ∈ { 𝑋 } )
23 elun1 ( 𝑋 ∈ { 𝑋 } → 𝑋 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) )
24 3 22 23 3syl ( 𝜑𝑋 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) )
25 24 adantr ( ( 𝜑𝑎𝐿 ) → 𝑋 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) )
26 breq2 ( 𝑏 = 𝑋 → ( 𝑎 ≤s 𝑏𝑎 ≤s 𝑋 ) )
27 26 rspcev ( ( 𝑋 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) ∧ 𝑎 ≤s 𝑋 ) → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 )
28 25 27 sylan ( ( ( 𝜑𝑎𝐿 ) ∧ 𝑎 ≤s 𝑋 ) → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 )
29 28 ex ( ( 𝜑𝑎𝐿 ) → ( 𝑎 ≤s 𝑋 → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 ) )
30 6 adantr ( ( 𝜑𝑎𝐿 ) → 𝑋 No )
31 5 sselda ( ( 𝜑𝑎𝐿 ) → 𝑎 No )
32 sltnle ( ( 𝑋 No 𝑎 No ) → ( 𝑋 <s 𝑎 ↔ ¬ 𝑎 ≤s 𝑋 ) )
33 30 31 32 syl2anc ( ( 𝜑𝑎𝐿 ) → ( 𝑋 <s 𝑎 ↔ ¬ 𝑎 ≤s 𝑋 ) )
34 breq2 ( 𝑦 = 𝑎 → ( 𝑋 <s 𝑦𝑋 <s 𝑎 ) )
35 34 elrab ( 𝑎 ∈ { 𝑦𝐿𝑋 <s 𝑦 } ↔ ( 𝑎𝐿𝑋 <s 𝑎 ) )
36 elun2 ( 𝑎 ∈ { 𝑦𝐿𝑋 <s 𝑦 } → 𝑎 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) )
37 35 36 sylbir ( ( 𝑎𝐿𝑋 <s 𝑎 ) → 𝑎 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) )
38 slerflex ( 𝑎 No 𝑎 ≤s 𝑎 )
39 31 38 syl ( ( 𝜑𝑎𝐿 ) → 𝑎 ≤s 𝑎 )
40 39 adantrr ( ( 𝜑 ∧ ( 𝑎𝐿𝑋 <s 𝑎 ) ) → 𝑎 ≤s 𝑎 )
41 breq2 ( 𝑏 = 𝑎 → ( 𝑎 ≤s 𝑏𝑎 ≤s 𝑎 ) )
42 41 rspcev ( ( 𝑎 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) ∧ 𝑎 ≤s 𝑎 ) → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 )
43 37 40 42 syl2an2 ( ( 𝜑 ∧ ( 𝑎𝐿𝑋 <s 𝑎 ) ) → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 )
44 43 expr ( ( 𝜑𝑎𝐿 ) → ( 𝑋 <s 𝑎 → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 ) )
45 33 44 sylbird ( ( 𝜑𝑎𝐿 ) → ( ¬ 𝑎 ≤s 𝑋 → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 ) )
46 29 45 pm2.61d ( ( 𝜑𝑎𝐿 ) → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 )
47 46 ralrimiva ( 𝜑 → ∀ 𝑎𝐿𝑏 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 )
48 ssidd ( 𝜑𝑅𝑅 )
49 20 48 coiniss ( 𝜑 → ∀ 𝑎𝑅𝑏𝑅 𝑏 ≤s 𝑎 )
50 3 snssd ( 𝜑 → { 𝑋 } ⊆ 𝐿 )
51 12 a1i ( 𝜑 → { 𝑦𝐿𝑋 <s 𝑦 } ⊆ 𝐿 )
52 50 51 unssd ( 𝜑 → ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) ⊆ 𝐿 )
53 5 52 cofss ( 𝜑 → ∀ 𝑎 ∈ ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) ∃ 𝑏𝐿 𝑎 ≤s 𝑏 )
54 1 16 21 47 49 53 49 cofcut2d ( 𝜑 → ( 𝐿 |s 𝑅 ) = ( ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) |s 𝑅 ) )
55 2 54 eqtrd ( 𝜑𝐴 = ( ( { 𝑋 } ∪ { 𝑦𝐿𝑋 <s 𝑦 } ) |s 𝑅 ) )