| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cutlt.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
| 2 |
|
cutlt.2 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
| 3 |
|
cutlt.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐿 ) |
| 4 |
|
ssltss1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ⊆ No ) |
| 5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ No ) |
| 6 |
5 3
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ No ) |
| 7 |
|
snelpwi |
⊢ ( 𝑋 ∈ No → { 𝑋 } ∈ 𝒫 No ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → { 𝑋 } ∈ 𝒫 No ) |
| 9 |
|
ssltex1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ∈ V ) |
| 10 |
|
rabexg |
⊢ ( 𝐿 ∈ V → { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ∈ V ) |
| 11 |
1 9 10
|
3syl |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ∈ V ) |
| 12 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ⊆ 𝐿 |
| 13 |
12 5
|
sstrid |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ⊆ No ) |
| 14 |
11 13
|
elpwd |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ∈ 𝒫 No ) |
| 15 |
|
pwuncl |
⊢ ( ( { 𝑋 } ∈ 𝒫 No ∧ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ∈ 𝒫 No ) → ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) ∈ 𝒫 No ) |
| 16 |
8 14 15
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) ∈ 𝒫 No ) |
| 17 |
|
ssltex2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ∈ V ) |
| 18 |
1 17
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 19 |
|
ssltss2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ⊆ No ) |
| 20 |
1 19
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ No ) |
| 21 |
18 20
|
elpwd |
⊢ ( 𝜑 → 𝑅 ∈ 𝒫 No ) |
| 22 |
|
snidg |
⊢ ( 𝑋 ∈ 𝐿 → 𝑋 ∈ { 𝑋 } ) |
| 23 |
|
elun1 |
⊢ ( 𝑋 ∈ { 𝑋 } → 𝑋 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) ) |
| 24 |
3 22 23
|
3syl |
⊢ ( 𝜑 → 𝑋 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐿 ) → 𝑋 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) ) |
| 26 |
|
breq2 |
⊢ ( 𝑏 = 𝑋 → ( 𝑎 ≤s 𝑏 ↔ 𝑎 ≤s 𝑋 ) ) |
| 27 |
26
|
rspcev |
⊢ ( ( 𝑋 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) ∧ 𝑎 ≤s 𝑋 ) → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 ) |
| 28 |
25 27
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐿 ) ∧ 𝑎 ≤s 𝑋 ) → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 ) |
| 29 |
28
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐿 ) → ( 𝑎 ≤s 𝑋 → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 ) ) |
| 30 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐿 ) → 𝑋 ∈ No ) |
| 31 |
5
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐿 ) → 𝑎 ∈ No ) |
| 32 |
|
sltnle |
⊢ ( ( 𝑋 ∈ No ∧ 𝑎 ∈ No ) → ( 𝑋 <s 𝑎 ↔ ¬ 𝑎 ≤s 𝑋 ) ) |
| 33 |
30 31 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐿 ) → ( 𝑋 <s 𝑎 ↔ ¬ 𝑎 ≤s 𝑋 ) ) |
| 34 |
|
breq2 |
⊢ ( 𝑦 = 𝑎 → ( 𝑋 <s 𝑦 ↔ 𝑋 <s 𝑎 ) ) |
| 35 |
34
|
elrab |
⊢ ( 𝑎 ∈ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ↔ ( 𝑎 ∈ 𝐿 ∧ 𝑋 <s 𝑎 ) ) |
| 36 |
|
elun2 |
⊢ ( 𝑎 ∈ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } → 𝑎 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) ) |
| 37 |
35 36
|
sylbir |
⊢ ( ( 𝑎 ∈ 𝐿 ∧ 𝑋 <s 𝑎 ) → 𝑎 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) ) |
| 38 |
|
slerflex |
⊢ ( 𝑎 ∈ No → 𝑎 ≤s 𝑎 ) |
| 39 |
31 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐿 ) → 𝑎 ≤s 𝑎 ) |
| 40 |
39
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐿 ∧ 𝑋 <s 𝑎 ) ) → 𝑎 ≤s 𝑎 ) |
| 41 |
|
breq2 |
⊢ ( 𝑏 = 𝑎 → ( 𝑎 ≤s 𝑏 ↔ 𝑎 ≤s 𝑎 ) ) |
| 42 |
41
|
rspcev |
⊢ ( ( 𝑎 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) ∧ 𝑎 ≤s 𝑎 ) → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 ) |
| 43 |
37 40 42
|
syl2an2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐿 ∧ 𝑋 <s 𝑎 ) ) → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 ) |
| 44 |
43
|
expr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐿 ) → ( 𝑋 <s 𝑎 → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 ) ) |
| 45 |
33 44
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐿 ) → ( ¬ 𝑎 ≤s 𝑋 → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 ) ) |
| 46 |
29 45
|
pm2.61d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐿 ) → ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 ) |
| 47 |
46
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐿 ∃ 𝑏 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) 𝑎 ≤s 𝑏 ) |
| 48 |
|
ssidd |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑅 ) |
| 49 |
20 48
|
coiniss |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑅 𝑏 ≤s 𝑎 ) |
| 50 |
3
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝐿 ) |
| 51 |
12
|
a1i |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ⊆ 𝐿 ) |
| 52 |
50 51
|
unssd |
⊢ ( 𝜑 → ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) ⊆ 𝐿 ) |
| 53 |
5 52
|
cofss |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) ∃ 𝑏 ∈ 𝐿 𝑎 ≤s 𝑏 ) |
| 54 |
1 16 21 47 49 53 49
|
cofcut2d |
⊢ ( 𝜑 → ( 𝐿 |s 𝑅 ) = ( ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) |s 𝑅 ) ) |
| 55 |
2 54
|
eqtrd |
⊢ ( 𝜑 → 𝐴 = ( ( { 𝑋 } ∪ { 𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦 } ) |s 𝑅 ) ) |