| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ Cℋ ↔ 𝐴 ∈ Cℋ ) ) |
| 2 |
1
|
anbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ↔ ( 𝐴 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ) ) |
| 3 |
|
psseq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊊ 𝑧 ↔ 𝐴 ⊊ 𝑧 ) ) |
| 4 |
|
psseq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊊ 𝑥 ↔ 𝐴 ⊊ 𝑥 ) ) |
| 5 |
4
|
anbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ↔ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) |
| 6 |
5
|
rexbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ Cℋ ( 𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ↔ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) |
| 7 |
6
|
notbid |
⊢ ( 𝑦 = 𝐴 → ( ¬ ∃ 𝑥 ∈ Cℋ ( 𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ↔ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) |
| 8 |
3 7
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ↔ ( 𝐴 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) ) |
| 9 |
2 8
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ∧ ( 𝑦 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ∧ ( 𝐴 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) ) ) |
| 10 |
|
eleq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ Cℋ ↔ 𝐵 ∈ Cℋ ) ) |
| 11 |
10
|
anbi2d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ↔ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) ) |
| 12 |
|
psseq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 ⊊ 𝑧 ↔ 𝐴 ⊊ 𝐵 ) ) |
| 13 |
|
psseq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝑥 ⊊ 𝑧 ↔ 𝑥 ⊊ 𝐵 ) ) |
| 14 |
13
|
anbi2d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ↔ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 15 |
14
|
rexbidv |
⊢ ( 𝑧 = 𝐵 → ( ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ↔ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 16 |
15
|
notbid |
⊢ ( 𝑧 = 𝐵 → ( ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ↔ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 17 |
12 16
|
anbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ↔ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) |
| 18 |
11 17
|
anbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( ( 𝐴 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ∧ ( 𝐴 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) ) |
| 19 |
|
df-cv |
⊢ ⋖ℋ = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ∧ ( 𝑦 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) } |
| 20 |
9 18 19
|
brabg |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) ) |
| 21 |
20
|
bianabs |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) |