| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chpsscon3 | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ⊊  𝐵  ↔  ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							chpsscon3 | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝑥  ∈   Cℋ  )  →  ( 𝐴  ⊊  𝑥  ↔  ( ⊥ ‘ 𝑥 )  ⊊  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantlr | 
							⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  ∧  𝑥  ∈   Cℋ  )  →  ( 𝐴  ⊊  𝑥  ↔  ( ⊥ ‘ 𝑥 )  ⊊  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							chpsscon3 | 
							⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝑥  ⊊  𝐵  ↔  ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝑥 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ancoms | 
							⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝑥  ∈   Cℋ  )  →  ( 𝑥  ⊊  𝐵  ↔  ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝑥 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantll | 
							⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  ∧  𝑥  ∈   Cℋ  )  →  ( 𝑥  ⊊  𝐵  ↔  ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝑥 ) ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							anbi12d | 
							⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  ∧  𝑥  ∈   Cℋ  )  →  ( ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 )  ↔  ( ( ⊥ ‘ 𝑥 )  ⊊  ( ⊥ ‘ 𝐴 )  ∧  ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝑥 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							choccl | 
							⊢ ( 𝑥  ∈   Cℋ   →  ( ⊥ ‘ 𝑥 )  ∈   Cℋ  )  | 
						
						
							| 9 | 
							
								
							 | 
							psseq2 | 
							⊢ ( 𝑦  =  ( ⊥ ‘ 𝑥 )  →  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ↔  ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝑥 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							psseq1 | 
							⊢ ( 𝑦  =  ( ⊥ ‘ 𝑥 )  →  ( 𝑦  ⊊  ( ⊥ ‘ 𝐴 )  ↔  ( ⊥ ‘ 𝑥 )  ⊊  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							anbi12d | 
							⊢ ( 𝑦  =  ( ⊥ ‘ 𝑥 )  →  ( ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) )  ↔  ( ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝑥 )  ∧  ( ⊥ ‘ 𝑥 )  ⊊  ( ⊥ ‘ 𝐴 ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							rspcev | 
							⊢ ( ( ( ⊥ ‘ 𝑥 )  ∈   Cℋ   ∧  ( ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝑥 )  ∧  ( ⊥ ‘ 𝑥 )  ⊊  ( ⊥ ‘ 𝐴 ) ) )  →  ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 13 | 
							
								8 12
							 | 
							sylan | 
							⊢ ( ( 𝑥  ∈   Cℋ   ∧  ( ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝑥 )  ∧  ( ⊥ ‘ 𝑥 )  ⊊  ( ⊥ ‘ 𝐴 ) ) )  →  ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ex | 
							⊢ ( 𝑥  ∈   Cℋ   →  ( ( ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝑥 )  ∧  ( ⊥ ‘ 𝑥 )  ⊊  ( ⊥ ‘ 𝐴 ) )  →  ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ancomsd | 
							⊢ ( 𝑥  ∈   Cℋ   →  ( ( ( ⊥ ‘ 𝑥 )  ⊊  ( ⊥ ‘ 𝐴 )  ∧  ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝑥 ) )  →  ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantl | 
							⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  ∧  𝑥  ∈   Cℋ  )  →  ( ( ( ⊥ ‘ 𝑥 )  ⊊  ( ⊥ ‘ 𝐴 )  ∧  ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝑥 ) )  →  ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) ) ) )  | 
						
						
							| 17 | 
							
								7 16
							 | 
							sylbid | 
							⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  ∧  𝑥  ∈   Cℋ  )  →  ( ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 )  →  ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rexlimdva | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 )  →  ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							chpsscon1 | 
							⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝑦  ∈   Cℋ  )  →  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ↔  ( ⊥ ‘ 𝑦 )  ⊊  𝐵 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantll | 
							⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  ∧  𝑦  ∈   Cℋ  )  →  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ↔  ( ⊥ ‘ 𝑦 )  ⊊  𝐵 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							chpsscon2 | 
							⊢ ( ( 𝑦  ∈   Cℋ   ∧  𝐴  ∈   Cℋ  )  →  ( 𝑦  ⊊  ( ⊥ ‘ 𝐴 )  ↔  𝐴  ⊊  ( ⊥ ‘ 𝑦 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝑦  ∈   Cℋ  )  →  ( 𝑦  ⊊  ( ⊥ ‘ 𝐴 )  ↔  𝐴  ⊊  ( ⊥ ‘ 𝑦 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantlr | 
							⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  ∧  𝑦  ∈   Cℋ  )  →  ( 𝑦  ⊊  ( ⊥ ‘ 𝐴 )  ↔  𝐴  ⊊  ( ⊥ ‘ 𝑦 ) ) )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							anbi12d | 
							⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  ∧  𝑦  ∈   Cℋ  )  →  ( ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) )  ↔  ( ( ⊥ ‘ 𝑦 )  ⊊  𝐵  ∧  𝐴  ⊊  ( ⊥ ‘ 𝑦 ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							choccl | 
							⊢ ( 𝑦  ∈   Cℋ   →  ( ⊥ ‘ 𝑦 )  ∈   Cℋ  )  | 
						
						
							| 26 | 
							
								
							 | 
							psseq2 | 
							⊢ ( 𝑥  =  ( ⊥ ‘ 𝑦 )  →  ( 𝐴  ⊊  𝑥  ↔  𝐴  ⊊  ( ⊥ ‘ 𝑦 ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							psseq1 | 
							⊢ ( 𝑥  =  ( ⊥ ‘ 𝑦 )  →  ( 𝑥  ⊊  𝐵  ↔  ( ⊥ ‘ 𝑦 )  ⊊  𝐵 ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  ( ⊥ ‘ 𝑦 )  →  ( ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 )  ↔  ( 𝐴  ⊊  ( ⊥ ‘ 𝑦 )  ∧  ( ⊥ ‘ 𝑦 )  ⊊  𝐵 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							rspcev | 
							⊢ ( ( ( ⊥ ‘ 𝑦 )  ∈   Cℋ   ∧  ( 𝐴  ⊊  ( ⊥ ‘ 𝑦 )  ∧  ( ⊥ ‘ 𝑦 )  ⊊  𝐵 ) )  →  ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 ) )  | 
						
						
							| 30 | 
							
								25 29
							 | 
							sylan | 
							⊢ ( ( 𝑦  ∈   Cℋ   ∧  ( 𝐴  ⊊  ( ⊥ ‘ 𝑦 )  ∧  ( ⊥ ‘ 𝑦 )  ⊊  𝐵 ) )  →  ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ex | 
							⊢ ( 𝑦  ∈   Cℋ   →  ( ( 𝐴  ⊊  ( ⊥ ‘ 𝑦 )  ∧  ( ⊥ ‘ 𝑦 )  ⊊  𝐵 )  →  ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							ancomsd | 
							⊢ ( 𝑦  ∈   Cℋ   →  ( ( ( ⊥ ‘ 𝑦 )  ⊊  𝐵  ∧  𝐴  ⊊  ( ⊥ ‘ 𝑦 ) )  →  ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantl | 
							⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  ∧  𝑦  ∈   Cℋ  )  →  ( ( ( ⊥ ‘ 𝑦 )  ⊊  𝐵  ∧  𝐴  ⊊  ( ⊥ ‘ 𝑦 ) )  →  ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 ) ) )  | 
						
						
							| 34 | 
							
								24 33
							 | 
							sylbid | 
							⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  ∧  𝑦  ∈   Cℋ  )  →  ( ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) )  →  ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							rexlimdva | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) )  →  ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 ) ) )  | 
						
						
							| 36 | 
							
								18 35
							 | 
							impbid | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 )  ↔  ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							notbid | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ¬  ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 )  ↔  ¬  ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) ) ) )  | 
						
						
							| 38 | 
							
								1 37
							 | 
							anbi12d | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ( 𝐴  ⊊  𝐵  ∧  ¬  ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 ) )  ↔  ( ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝐴 )  ∧  ¬  ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) ) ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							cvbr | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ⋖ℋ  𝐵  ↔  ( 𝐴  ⊊  𝐵  ∧  ¬  ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊊  𝑥  ∧  𝑥  ⊊  𝐵 ) ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							choccl | 
							⊢ ( 𝐵  ∈   Cℋ   →  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  )  | 
						
						
							| 41 | 
							
								
							 | 
							choccl | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  )  | 
						
						
							| 42 | 
							
								
							 | 
							cvbr | 
							⊢ ( ( ( ⊥ ‘ 𝐵 )  ∈   Cℋ   ∧  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  )  →  ( ( ⊥ ‘ 𝐵 )  ⋖ℋ  ( ⊥ ‘ 𝐴 )  ↔  ( ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝐴 )  ∧  ¬  ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) ) ) ) )  | 
						
						
							| 43 | 
							
								40 41 42
							 | 
							syl2anr | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ( ⊥ ‘ 𝐵 )  ⋖ℋ  ( ⊥ ‘ 𝐴 )  ↔  ( ( ⊥ ‘ 𝐵 )  ⊊  ( ⊥ ‘ 𝐴 )  ∧  ¬  ∃ 𝑦  ∈   Cℋ  ( ( ⊥ ‘ 𝐵 )  ⊊  𝑦  ∧  𝑦  ⊊  ( ⊥ ‘ 𝐴 ) ) ) ) )  | 
						
						
							| 44 | 
							
								38 39 43
							 | 
							3bitr4d | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ⋖ℋ  𝐵  ↔  ( ⊥ ‘ 𝐵 )  ⋖ℋ  ( ⊥ ‘ 𝐴 ) ) )  |