Step |
Hyp |
Ref |
Expression |
1 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
2 |
|
choccl |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
3 |
|
cvmd |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ∧ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ⋖ℋ ( ⊥ ‘ 𝐵 ) ) → ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) |
4 |
3
|
3expia |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ⋖ℋ ( ⊥ ‘ 𝐵 ) → ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) ) |
5 |
1 2 4
|
syl2an |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ⋖ℋ ( ⊥ ‘ 𝐵 ) → ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) ) |
6 |
|
simpr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐵 ∈ Cℋ ) |
7 |
|
chjcl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) |
8 |
|
cvcon3 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) → ( 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⋖ℋ ( ⊥ ‘ 𝐵 ) ) ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⋖ℋ ( ⊥ ‘ 𝐵 ) ) ) |
10 |
|
chdmj1 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
11 |
10
|
breq1d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⋖ℋ ( ⊥ ‘ 𝐵 ) ↔ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ⋖ℋ ( ⊥ ‘ 𝐵 ) ) ) |
12 |
9 11
|
bitrd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ⋖ℋ ( ⊥ ‘ 𝐵 ) ) ) |
13 |
|
dmdmd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) ) |
14 |
5 12 13
|
3imtr4d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 𝑀ℋ* 𝐵 ) ) |
15 |
14
|
3impia |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) → 𝐴 𝑀ℋ* 𝐵 ) |