Metamath Proof Explorer


Theorem cvdmd

Description: The covering property implies the dual modular pair property. Lemma 7.5.2 of MaedaMaeda p. 31. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvdmd ( ( 𝐴C𝐵C𝐵 ( 𝐴 𝐵 ) ) → 𝐴 𝑀* 𝐵 )

Proof

Step Hyp Ref Expression
1 choccl ( 𝐴C → ( ⊥ ‘ 𝐴 ) ∈ C )
2 choccl ( 𝐵C → ( ⊥ ‘ 𝐵 ) ∈ C )
3 cvmd ( ( ( ⊥ ‘ 𝐴 ) ∈ C ∧ ( ⊥ ‘ 𝐵 ) ∈ C ∧ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ⋖ ( ⊥ ‘ 𝐵 ) ) → ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) )
4 3 3expia ( ( ( ⊥ ‘ 𝐴 ) ∈ C ∧ ( ⊥ ‘ 𝐵 ) ∈ C ) → ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ⋖ ( ⊥ ‘ 𝐵 ) → ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) ) )
5 1 2 4 syl2an ( ( 𝐴C𝐵C ) → ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ⋖ ( ⊥ ‘ 𝐵 ) → ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) ) )
6 simpr ( ( 𝐴C𝐵C ) → 𝐵C )
7 chjcl ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ) ∈ C )
8 cvcon3 ( ( 𝐵C ∧ ( 𝐴 𝐵 ) ∈ C ) → ( 𝐵 ( 𝐴 𝐵 ) ↔ ( ⊥ ‘ ( 𝐴 𝐵 ) ) ⋖ ( ⊥ ‘ 𝐵 ) ) )
9 6 7 8 syl2anc ( ( 𝐴C𝐵C ) → ( 𝐵 ( 𝐴 𝐵 ) ↔ ( ⊥ ‘ ( 𝐴 𝐵 ) ) ⋖ ( ⊥ ‘ 𝐵 ) ) )
10 chdmj1 ( ( 𝐴C𝐵C ) → ( ⊥ ‘ ( 𝐴 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) )
11 10 breq1d ( ( 𝐴C𝐵C ) → ( ( ⊥ ‘ ( 𝐴 𝐵 ) ) ⋖ ( ⊥ ‘ 𝐵 ) ↔ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ⋖ ( ⊥ ‘ 𝐵 ) ) )
12 9 11 bitrd ( ( 𝐴C𝐵C ) → ( 𝐵 ( 𝐴 𝐵 ) ↔ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ⋖ ( ⊥ ‘ 𝐵 ) ) )
13 dmdmd ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) ) )
14 5 12 13 3imtr4d ( ( 𝐴C𝐵C ) → ( 𝐵 ( 𝐴 𝐵 ) → 𝐴 𝑀* 𝐵 ) )
15 14 3impia ( ( 𝐴C𝐵C𝐵 ( 𝐴 𝐵 ) ) → 𝐴 𝑀* 𝐵 )