Metamath Proof Explorer


Theorem cvexchi

Description: The Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of Kalmbach p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 𝐴C
chpssat.2 𝐵C
Assertion cvexchi ( ( 𝐴𝐵 ) ⋖ 𝐵𝐴 ( 𝐴 𝐵 ) )

Proof

Step Hyp Ref Expression
1 chpssat.1 𝐴C
2 chpssat.2 𝐵C
3 1 2 cvexchlem ( ( 𝐴𝐵 ) ⋖ 𝐵𝐴 ( 𝐴 𝐵 ) )
4 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
5 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
6 4 5 cvexchlem ( ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ⋖ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ 𝐵 ) ⋖ ( ( ⊥ ‘ 𝐵 ) ∨ ( ⊥ ‘ 𝐴 ) ) )
7 1 2 chdmj1i ( ⊥ ‘ ( 𝐴 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) )
8 incom ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) )
9 7 8 eqtri ( ⊥ ‘ ( 𝐴 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) )
10 9 breq1i ( ( ⊥ ‘ ( 𝐴 𝐵 ) ) ⋖ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ⋖ ( ⊥ ‘ 𝐴 ) )
11 1 2 chdmm1i ( ⊥ ‘ ( 𝐴𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) )
12 5 4 chjcomi ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∨ ( ⊥ ‘ 𝐴 ) )
13 11 12 eqtri ( ⊥ ‘ ( 𝐴𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∨ ( ⊥ ‘ 𝐴 ) )
14 13 breq2i ( ( ⊥ ‘ 𝐵 ) ⋖ ( ⊥ ‘ ( 𝐴𝐵 ) ) ↔ ( ⊥ ‘ 𝐵 ) ⋖ ( ( ⊥ ‘ 𝐵 ) ∨ ( ⊥ ‘ 𝐴 ) ) )
15 6 10 14 3imtr4i ( ( ⊥ ‘ ( 𝐴 𝐵 ) ) ⋖ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ 𝐵 ) ⋖ ( ⊥ ‘ ( 𝐴𝐵 ) ) )
16 1 2 chjcli ( 𝐴 𝐵 ) ∈ C
17 cvcon3 ( ( 𝐴C ∧ ( 𝐴 𝐵 ) ∈ C ) → ( 𝐴 ( 𝐴 𝐵 ) ↔ ( ⊥ ‘ ( 𝐴 𝐵 ) ) ⋖ ( ⊥ ‘ 𝐴 ) ) )
18 1 16 17 mp2an ( 𝐴 ( 𝐴 𝐵 ) ↔ ( ⊥ ‘ ( 𝐴 𝐵 ) ) ⋖ ( ⊥ ‘ 𝐴 ) )
19 1 2 chincli ( 𝐴𝐵 ) ∈ C
20 cvcon3 ( ( ( 𝐴𝐵 ) ∈ C𝐵C ) → ( ( 𝐴𝐵 ) ⋖ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⋖ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
21 19 2 20 mp2an ( ( 𝐴𝐵 ) ⋖ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⋖ ( ⊥ ‘ ( 𝐴𝐵 ) ) )
22 15 18 21 3imtr4i ( 𝐴 ( 𝐴 𝐵 ) → ( 𝐴𝐵 ) ⋖ 𝐵 )
23 3 22 impbii ( ( 𝐴𝐵 ) ⋖ 𝐵𝐴 ( 𝐴 𝐵 ) )