| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpssat.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
chpssat.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
1 2
|
cvexchlem |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 → 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 4 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 5 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 6 |
4 5
|
cvexchlem |
⊢ ( ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ⋖ℋ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 7 |
1 2
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |
| 8 |
|
incom |
⊢ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) |
| 9 |
7 8
|
eqtri |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) |
| 10 |
9
|
breq1i |
⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⋖ℋ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ⋖ℋ ( ⊥ ‘ 𝐴 ) ) |
| 11 |
1 2
|
chdmm1i |
⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
| 12 |
5 4
|
chjcomi |
⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) |
| 13 |
11 12
|
eqtri |
⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) |
| 14 |
13
|
breq2i |
⊢ ( ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ↔ ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 15 |
6 10 14
|
3imtr4i |
⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⋖ℋ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 16 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
| 17 |
|
cvcon3 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⋖ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 18 |
1 16 17
|
mp2an |
⊢ ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⋖ℋ ( ⊥ ‘ 𝐴 ) ) |
| 19 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 20 |
|
cvcon3 |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 21 |
19 2 20
|
mp2an |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 22 |
15 18 21
|
3imtr4i |
⊢ ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 ) |
| 23 |
3 22
|
impbii |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) |