Step |
Hyp |
Ref |
Expression |
1 |
|
cvgcau.1 |
⊢ Ⅎ 𝑗 𝐹 |
2 |
|
cvgcau.2 |
⊢ Ⅎ 𝑘 𝐹 |
3 |
|
cvgcau.3 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
4 |
|
cvgcau.4 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
5 |
|
cvgcau.5 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
6 |
|
cvgcau.6 |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |
7 |
|
cvgcau.7 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
8 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
9 |
8
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ) |
10 |
9
|
rexralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ) |
11 |
5 3
|
eluzelz2d |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
12 |
1 2 5
|
caucvgbf |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
13 |
11 4 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
14 |
6 13
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
15 |
10 14 7
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |