| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvgcau.1 |
⊢ Ⅎ 𝑗 𝐹 |
| 2 |
|
cvgcau.2 |
⊢ Ⅎ 𝑘 𝐹 |
| 3 |
|
cvgcau.3 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 4 |
|
cvgcau.4 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 5 |
|
cvgcau.5 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 6 |
|
cvgcau.6 |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |
| 7 |
|
cvgcau.7 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
| 8 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
| 9 |
8
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ) |
| 10 |
9
|
rexralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ) |
| 11 |
5 3
|
eluzelz2d |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 12 |
1 2 5
|
caucvgbf |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 13 |
11 4 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 14 |
6 13
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 15 |
10 14 7
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |