| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvgcaule.1 |
⊢ Ⅎ 𝑗 𝐹 |
| 2 |
|
cvgcaule.2 |
⊢ Ⅎ 𝑘 𝐹 |
| 3 |
|
cvgcaule.3 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 4 |
|
cvgcaule.4 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 5 |
|
cvgcaule.5 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 6 |
|
cvgcaule.6 |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |
| 7 |
|
cvgcaule.7 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
| 8 |
1 2 3 4 5 6 7
|
cvgcau |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) |
| 10 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) |
| 11 |
9 10
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
| 12 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
| 13 |
12
|
simpld |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 14 |
13
|
adantll |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 15 |
13
|
adantll |
⊢ ( ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 16 |
5
|
uzid3 |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
| 18 |
2 17
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) |
| 19 |
18
|
nfel1 |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) ∈ ℂ |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑘 abs |
| 21 |
|
nfcv |
⊢ Ⅎ 𝑘 − |
| 22 |
18 21 18
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) |
| 23 |
20 22
|
nffv |
⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) |
| 24 |
|
nfcv |
⊢ Ⅎ 𝑘 < |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑋 |
| 26 |
23 24 25
|
nfbr |
⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 |
| 27 |
19 26
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) |
| 28 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 29 |
28
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ) |
| 30 |
28
|
fvoveq1d |
⊢ ( 𝑘 = 𝑗 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 31 |
30
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
| 32 |
29 31
|
anbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ↔ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ) |
| 33 |
27 32
|
rspc |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ) |
| 34 |
16 33
|
syl |
⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ) |
| 35 |
34
|
imp |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
| 36 |
35
|
simpld |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 37 |
36
|
adantr |
⊢ ( ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 38 |
15 37
|
subcld |
⊢ ( ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ∈ ℂ ) |
| 39 |
38
|
abscld |
⊢ ( ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 40 |
39
|
adantlll |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 41 |
|
simplll |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑋 ∈ ℝ+ ) |
| 42 |
41
|
rpred |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑋 ∈ ℝ ) |
| 43 |
12
|
adantll |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
| 44 |
43
|
simprd |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) |
| 45 |
40 42 44
|
ltled |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑋 ) |
| 46 |
14 45
|
jca |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑋 ) ) |
| 47 |
11 46
|
ralrimia |
⊢ ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑋 ) ) |
| 48 |
47
|
ex |
⊢ ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑋 ) ) ) |
| 49 |
48
|
reximdva |
⊢ ( 𝑋 ∈ ℝ+ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑋 ) ) ) |
| 50 |
7 8 49
|
sylc |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑋 ) ) |