Step |
Hyp |
Ref |
Expression |
1 |
|
cvgcmpce.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
cvgcmpce.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
3 |
|
cvgcmpce.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
4 |
|
cvgcmpce.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
5 |
|
cvgcmpce.5 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
6 |
|
cvgcmpce.6 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
7 |
|
cvgcmpce.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
8 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
11 |
1 10 4
|
serf |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℂ ) |
12 |
11
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
13 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
15 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) |
16 |
|
ovex |
⊢ ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ∈ V |
17 |
14 15 16
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
20 |
19 3
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
21 |
18 20
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
22 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑘 → ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
23 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) |
24 |
|
fvex |
⊢ ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ V |
25 |
22 23 24
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
27 |
4
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
28 |
26 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
29 |
6
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
30 |
|
climdm |
⊢ ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
31 |
5 30
|
sylib |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
32 |
3
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
33 |
1 10 29 31 32 18
|
isermulc2 |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ) ⇝ ( 𝐶 · ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) ) |
34 |
|
climrel |
⊢ Rel ⇝ |
35 |
34
|
releldmi |
⊢ ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ) ⇝ ( 𝐶 · ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
36 |
33 35
|
syl |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
37 |
1
|
uztrn2 |
⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
38 |
2 37
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
39 |
4
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
40 |
39 26
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) |
41 |
38 40
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) |
42 |
38 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
43 |
38 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
44 |
7 42 43
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) |
45 |
1 2 21 28 36 41 44
|
cvgcmp |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
46 |
1
|
climcau |
⊢ ( ( 𝑀 ∈ ℤ ∧ seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 ) |
47 |
10 45 46
|
syl2anc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 ) |
48 |
1 10 28
|
serfre |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) : 𝑍 ⟶ ℝ ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) : 𝑍 ⟶ ℝ ) |
50 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝑍 ) |
51 |
50
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 ∈ 𝑍 ) |
52 |
49 51
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
53 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ 𝑍 ) |
54 |
49 53
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ∈ ℝ ) |
55 |
52 54
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ∈ ℝ ) |
56 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ∈ ℝ ) |
57 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℂ ) |
58 |
57 51
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
59 |
57 53
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℂ ) |
60 |
58 59
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ∈ ℂ ) |
61 |
60
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ∈ ℝ ) |
62 |
60
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ≤ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ) |
63 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) |
64 |
|
difss |
⊢ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ⊆ ( 𝑀 ... 𝑛 ) |
65 |
|
ssfi |
⊢ ( ( ( 𝑀 ... 𝑛 ) ∈ Fin ∧ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ⊆ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ∈ Fin ) |
66 |
63 64 65
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ∈ Fin ) |
67 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) |
68 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝜑 ) |
69 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
70 |
69 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ 𝑍 ) |
71 |
68 70 4
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
72 |
67 71
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
73 |
66 72
|
fsumabs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
74 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
75 |
51 1
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
76 |
74 75 71
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺 ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) |
77 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
78 |
53 1
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
79 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
80 |
79 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
81 |
68 80 4
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
82 |
77 78 81
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) |
83 |
76 82
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺 ‘ 𝑘 ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) |
84 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑀 ... 𝑗 ) ∈ Fin ) |
85 |
84 81
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
86 |
66 72
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
87 |
|
disjdif |
⊢ ( ( 𝑀 ... 𝑗 ) ∩ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) = ∅ |
88 |
87
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑀 ... 𝑗 ) ∩ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) = ∅ ) |
89 |
|
undif2 |
⊢ ( ( 𝑀 ... 𝑗 ) ∪ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) = ( ( 𝑀 ... 𝑗 ) ∪ ( 𝑀 ... 𝑛 ) ) |
90 |
|
fzss2 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... 𝑛 ) ) |
91 |
90
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... 𝑛 ) ) |
92 |
|
ssequn1 |
⊢ ( ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... 𝑛 ) ↔ ( ( 𝑀 ... 𝑗 ) ∪ ( 𝑀 ... 𝑛 ) ) = ( 𝑀 ... 𝑛 ) ) |
93 |
91 92
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑀 ... 𝑗 ) ∪ ( 𝑀 ... 𝑛 ) ) = ( 𝑀 ... 𝑛 ) ) |
94 |
89 93
|
eqtr2id |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑀 ... 𝑛 ) = ( ( 𝑀 ... 𝑗 ) ∪ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) ) |
95 |
88 94 63 71
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
96 |
85 86 95
|
mvrladdd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺 ‘ 𝑘 ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) |
97 |
83 96
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) |
98 |
97
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
99 |
70
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
100 |
99 25
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
101 |
|
abscl |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
102 |
101
|
recnd |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
103 |
71 102
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
104 |
100 75 103
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) = ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) ) |
105 |
80
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
106 |
105 25
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
107 |
81 102
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
108 |
106 78 107
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) = ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) |
109 |
104 108
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) = ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) |
110 |
84 107
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
111 |
72 102
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
112 |
66 111
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
113 |
88 94 63 103
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) + Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
114 |
110 112 113
|
mvrladdd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
115 |
109 114
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
116 |
73 98 115
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ≤ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) |
117 |
56 61 55 62 116
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ≤ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) |
118 |
55 117
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) = ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) |
119 |
118
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 ↔ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 ) ) |
120 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
121 |
120
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑥 ∈ ℝ ) |
122 |
|
lelttr |
⊢ ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ∈ ℝ ∧ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ≤ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ∧ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
123 |
61 55 121 122
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ≤ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ∧ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
124 |
116 123
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
125 |
119 124
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
126 |
125
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
127 |
126
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
128 |
127
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
129 |
128
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
130 |
47 129
|
mpd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) |
131 |
|
seqex |
⊢ seq 𝑀 ( + , 𝐺 ) ∈ V |
132 |
131
|
a1i |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ V ) |
133 |
1 12 130 132
|
caucvg |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |