| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvgcmpce.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
cvgcmpce.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
| 3 |
|
cvgcmpce.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 4 |
|
cvgcmpce.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 5 |
|
cvgcmpce.5 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 6 |
|
cvgcmpce.6 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 7 |
|
cvgcmpce.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 8 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 11 |
1 10 4
|
serf |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℂ ) |
| 12 |
11
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 13 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 15 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) |
| 16 |
|
ovex |
⊢ ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ∈ V |
| 17 |
14 15 16
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
| 20 |
19 3
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 21 |
18 20
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 22 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑘 → ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 23 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) |
| 24 |
|
fvex |
⊢ ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ V |
| 25 |
22 23 24
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 27 |
4
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 28 |
26 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 29 |
6
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 30 |
|
climdm |
⊢ ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 31 |
5 30
|
sylib |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 32 |
3
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 33 |
1 10 29 31 32 18
|
isermulc2 |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ) ⇝ ( 𝐶 · ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) ) |
| 34 |
|
climrel |
⊢ Rel ⇝ |
| 35 |
34
|
releldmi |
⊢ ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ) ⇝ ( 𝐶 · ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
| 36 |
33 35
|
syl |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
| 37 |
1
|
uztrn2 |
⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 38 |
2 37
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 39 |
4
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 40 |
39 26
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) |
| 41 |
38 40
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) |
| 42 |
38 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 43 |
38 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 44 |
7 42 43
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) |
| 45 |
1 2 21 28 36 41 44
|
cvgcmp |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
| 46 |
1
|
climcau |
⊢ ( ( 𝑀 ∈ ℤ ∧ seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 ) |
| 47 |
10 45 46
|
syl2anc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 ) |
| 48 |
1 10 28
|
serfre |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) : 𝑍 ⟶ ℝ ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) : 𝑍 ⟶ ℝ ) |
| 50 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝑍 ) |
| 51 |
50
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 ∈ 𝑍 ) |
| 52 |
49 51
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 53 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ 𝑍 ) |
| 54 |
49 53
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ∈ ℝ ) |
| 55 |
52 54
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ∈ ℝ ) |
| 56 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ∈ ℝ ) |
| 57 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℂ ) |
| 58 |
57 51
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 59 |
57 53
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℂ ) |
| 60 |
58 59
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ∈ ℂ ) |
| 61 |
60
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 62 |
60
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ≤ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ) |
| 63 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) |
| 64 |
|
difss |
⊢ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ⊆ ( 𝑀 ... 𝑛 ) |
| 65 |
|
ssfi |
⊢ ( ( ( 𝑀 ... 𝑛 ) ∈ Fin ∧ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ⊆ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ∈ Fin ) |
| 66 |
63 64 65
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ∈ Fin ) |
| 67 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) |
| 68 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝜑 ) |
| 69 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 70 |
69 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ 𝑍 ) |
| 71 |
68 70 4
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 72 |
67 71
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 73 |
66 72
|
fsumabs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 74 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 75 |
51 1
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 76 |
74 75 71
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺 ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) |
| 77 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 78 |
53 1
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 79 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 80 |
79 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
| 81 |
68 80 4
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 82 |
77 78 81
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) |
| 83 |
76 82
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺 ‘ 𝑘 ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) |
| 84 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑀 ... 𝑗 ) ∈ Fin ) |
| 85 |
84 81
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 86 |
66 72
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 87 |
|
disjdif |
⊢ ( ( 𝑀 ... 𝑗 ) ∩ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) = ∅ |
| 88 |
87
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑀 ... 𝑗 ) ∩ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) = ∅ ) |
| 89 |
|
undif2 |
⊢ ( ( 𝑀 ... 𝑗 ) ∪ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) = ( ( 𝑀 ... 𝑗 ) ∪ ( 𝑀 ... 𝑛 ) ) |
| 90 |
|
fzss2 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... 𝑛 ) ) |
| 91 |
90
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... 𝑛 ) ) |
| 92 |
|
ssequn1 |
⊢ ( ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... 𝑛 ) ↔ ( ( 𝑀 ... 𝑗 ) ∪ ( 𝑀 ... 𝑛 ) ) = ( 𝑀 ... 𝑛 ) ) |
| 93 |
91 92
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑀 ... 𝑗 ) ∪ ( 𝑀 ... 𝑛 ) ) = ( 𝑀 ... 𝑛 ) ) |
| 94 |
89 93
|
eqtr2id |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑀 ... 𝑛 ) = ( ( 𝑀 ... 𝑗 ) ∪ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) ) |
| 95 |
88 94 63 71
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 96 |
85 86 95
|
mvrladdd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺 ‘ 𝑘 ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 97 |
83 96
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 98 |
97
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 99 |
70
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
| 100 |
99 25
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 101 |
|
abscl |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 102 |
101
|
recnd |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 103 |
71 102
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 104 |
100 75 103
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) = ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) ) |
| 105 |
80
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 106 |
105 25
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 107 |
81 102
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 108 |
106 78 107
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) = ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) |
| 109 |
104 108
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) = ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) |
| 110 |
84 107
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 111 |
72 102
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 112 |
66 111
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 113 |
88 94 63 103
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) + Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 114 |
110 112 113
|
mvrladdd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 115 |
109 114
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 116 |
73 98 115
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ≤ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) |
| 117 |
56 61 55 62 116
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ≤ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) |
| 118 |
55 117
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) = ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) |
| 119 |
118
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 ↔ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 ) ) |
| 120 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 121 |
120
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑥 ∈ ℝ ) |
| 122 |
|
lelttr |
⊢ ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ∈ ℝ ∧ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ≤ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ∧ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 123 |
61 55 121 122
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ≤ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ∧ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 124 |
116 123
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 125 |
119 124
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 126 |
125
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 127 |
126
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 128 |
127
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 129 |
128
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 130 |
47 129
|
mpd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) |
| 131 |
|
seqex |
⊢ seq 𝑀 ( + , 𝐺 ) ∈ V |
| 132 |
131
|
a1i |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ V ) |
| 133 |
1 12 130 132
|
caucvg |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |