Metamath Proof Explorer


Theorem cvgcmpce

Description: A comparison test for convergence of a complex infinite series. (Contributed by NM, 25-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses cvgcmpce.1 𝑍 = ( ℤ𝑀 )
cvgcmpce.2 ( 𝜑𝑁𝑍 )
cvgcmpce.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
cvgcmpce.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ℂ )
cvgcmpce.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
cvgcmpce.6 ( 𝜑𝐶 ∈ ℝ )
cvgcmpce.7 ( ( 𝜑𝑘 ∈ ( ℤ𝑁 ) ) → ( abs ‘ ( 𝐺𝑘 ) ) ≤ ( 𝐶 · ( 𝐹𝑘 ) ) )
Assertion cvgcmpce ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ )

Proof

Step Hyp Ref Expression
1 cvgcmpce.1 𝑍 = ( ℤ𝑀 )
2 cvgcmpce.2 ( 𝜑𝑁𝑍 )
3 cvgcmpce.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
4 cvgcmpce.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ℂ )
5 cvgcmpce.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
6 cvgcmpce.6 ( 𝜑𝐶 ∈ ℝ )
7 cvgcmpce.7 ( ( 𝜑𝑘 ∈ ( ℤ𝑁 ) ) → ( abs ‘ ( 𝐺𝑘 ) ) ≤ ( 𝐶 · ( 𝐹𝑘 ) ) )
8 2 1 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
9 eluzel2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
10 8 9 syl ( 𝜑𝑀 ∈ ℤ )
11 1 10 4 serf ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℂ )
12 11 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ )
13 fveq2 ( 𝑚 = 𝑘 → ( 𝐹𝑚 ) = ( 𝐹𝑘 ) )
14 13 oveq2d ( 𝑚 = 𝑘 → ( 𝐶 · ( 𝐹𝑚 ) ) = ( 𝐶 · ( 𝐹𝑘 ) ) )
15 eqid ( 𝑚𝑍 ↦ ( 𝐶 · ( 𝐹𝑚 ) ) ) = ( 𝑚𝑍 ↦ ( 𝐶 · ( 𝐹𝑚 ) ) )
16 ovex ( 𝐶 · ( 𝐹𝑘 ) ) ∈ V
17 14 15 16 fvmpt ( 𝑘𝑍 → ( ( 𝑚𝑍 ↦ ( 𝐶 · ( 𝐹𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐶 · ( 𝐹𝑘 ) ) )
18 17 adantl ( ( 𝜑𝑘𝑍 ) → ( ( 𝑚𝑍 ↦ ( 𝐶 · ( 𝐹𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐶 · ( 𝐹𝑘 ) ) )
19 6 adantr ( ( 𝜑𝑘𝑍 ) → 𝐶 ∈ ℝ )
20 19 3 remulcld ( ( 𝜑𝑘𝑍 ) → ( 𝐶 · ( 𝐹𝑘 ) ) ∈ ℝ )
21 18 20 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( ( 𝑚𝑍 ↦ ( 𝐶 · ( 𝐹𝑚 ) ) ) ‘ 𝑘 ) ∈ ℝ )
22 2fveq3 ( 𝑚 = 𝑘 → ( abs ‘ ( 𝐺𝑚 ) ) = ( abs ‘ ( 𝐺𝑘 ) ) )
23 eqid ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) = ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) )
24 fvex ( abs ‘ ( 𝐺𝑘 ) ) ∈ V
25 22 23 24 fvmpt ( 𝑘𝑍 → ( ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺𝑘 ) ) )
26 25 adantl ( ( 𝜑𝑘𝑍 ) → ( ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺𝑘 ) ) )
27 4 abscld ( ( 𝜑𝑘𝑍 ) → ( abs ‘ ( 𝐺𝑘 ) ) ∈ ℝ )
28 26 27 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ‘ 𝑘 ) ∈ ℝ )
29 6 recnd ( 𝜑𝐶 ∈ ℂ )
30 climdm ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
31 5 30 sylib ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
32 3 recnd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
33 1 10 29 31 32 18 isermulc2 ( 𝜑 → seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( 𝐶 · ( 𝐹𝑚 ) ) ) ) ⇝ ( 𝐶 · ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) )
34 climrel Rel ⇝
35 34 releldmi ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( 𝐶 · ( 𝐹𝑚 ) ) ) ) ⇝ ( 𝐶 · ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) → seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( 𝐶 · ( 𝐹𝑚 ) ) ) ) ∈ dom ⇝ )
36 33 35 syl ( 𝜑 → seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( 𝐶 · ( 𝐹𝑚 ) ) ) ) ∈ dom ⇝ )
37 1 uztrn2 ( ( 𝑁𝑍𝑘 ∈ ( ℤ𝑁 ) ) → 𝑘𝑍 )
38 2 37 sylan ( ( 𝜑𝑘 ∈ ( ℤ𝑁 ) ) → 𝑘𝑍 )
39 4 absge0d ( ( 𝜑𝑘𝑍 ) → 0 ≤ ( abs ‘ ( 𝐺𝑘 ) ) )
40 39 26 breqtrrd ( ( 𝜑𝑘𝑍 ) → 0 ≤ ( ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ‘ 𝑘 ) )
41 38 40 syldan ( ( 𝜑𝑘 ∈ ( ℤ𝑁 ) ) → 0 ≤ ( ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ‘ 𝑘 ) )
42 38 25 syl ( ( 𝜑𝑘 ∈ ( ℤ𝑁 ) ) → ( ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺𝑘 ) ) )
43 38 17 syl ( ( 𝜑𝑘 ∈ ( ℤ𝑁 ) ) → ( ( 𝑚𝑍 ↦ ( 𝐶 · ( 𝐹𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐶 · ( 𝐹𝑘 ) ) )
44 7 42 43 3brtr4d ( ( 𝜑𝑘 ∈ ( ℤ𝑁 ) ) → ( ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑚𝑍 ↦ ( 𝐶 · ( 𝐹𝑚 ) ) ) ‘ 𝑘 ) )
45 1 2 21 28 36 41 44 cvgcmp ( 𝜑 → seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ∈ dom ⇝ )
46 1 climcau ( ( 𝑀 ∈ ℤ ∧ seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ∈ dom ⇝ ) → ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 )
47 10 45 46 syl2anc ( 𝜑 → ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 )
48 1 10 28 serfre ( 𝜑 → seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) : 𝑍 ⟶ ℝ )
49 48 ad2antrr ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) : 𝑍 ⟶ ℝ )
50 1 uztrn2 ( ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → 𝑛𝑍 )
51 50 adantl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → 𝑛𝑍 )
52 49 51 ffvelrnd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) ∈ ℝ )
53 simprl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → 𝑗𝑍 )
54 49 53 ffvelrnd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ∈ ℝ )
55 52 54 resubcld ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ∈ ℝ )
56 0red ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → 0 ∈ ℝ )
57 11 ad2antrr ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℂ )
58 57 51 ffvelrnd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ )
59 57 53 ffvelrnd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℂ )
60 58 59 subcld ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ∈ ℂ )
61 60 abscld ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ∈ ℝ )
62 60 absge0d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → 0 ≤ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) )
63 fzfid ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( 𝑀 ... 𝑛 ) ∈ Fin )
64 difss ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ⊆ ( 𝑀 ... 𝑛 )
65 ssfi ( ( ( 𝑀 ... 𝑛 ) ∈ Fin ∧ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ⊆ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ∈ Fin )
66 63 64 65 sylancl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ∈ Fin )
67 eldifi ( 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑛 ) )
68 simpll ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → 𝜑 )
69 elfzuz ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ𝑀 ) )
70 69 1 eleqtrrdi ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘𝑍 )
71 68 70 4 syl2an ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺𝑘 ) ∈ ℂ )
72 67 71 sylan2 ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) → ( 𝐺𝑘 ) ∈ ℂ )
73 66 72 fsumabs ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( abs ‘ Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺𝑘 ) ) ≤ Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺𝑘 ) ) )
74 eqidd ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺𝑘 ) = ( 𝐺𝑘 ) )
75 51 1 eleqtrdi ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → 𝑛 ∈ ( ℤ𝑀 ) )
76 74 75 71 fsumser ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺𝑘 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) )
77 eqidd ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺𝑘 ) = ( 𝐺𝑘 ) )
78 53 1 eleqtrdi ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → 𝑗 ∈ ( ℤ𝑀 ) )
79 elfzuz ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ𝑀 ) )
80 79 1 eleqtrrdi ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘𝑍 )
81 68 80 4 syl2an ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺𝑘 ) ∈ ℂ )
82 77 78 81 fsumser ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺𝑘 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) )
83 76 82 oveq12d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺𝑘 ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺𝑘 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) )
84 fzfid ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( 𝑀 ... 𝑗 ) ∈ Fin )
85 84 81 fsumcl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺𝑘 ) ∈ ℂ )
86 66 72 fsumcl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺𝑘 ) ∈ ℂ )
87 disjdif ( ( 𝑀 ... 𝑗 ) ∩ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) = ∅
88 87 a1i ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( ( 𝑀 ... 𝑗 ) ∩ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) = ∅ )
89 undif2 ( ( 𝑀 ... 𝑗 ) ∪ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) = ( ( 𝑀 ... 𝑗 ) ∪ ( 𝑀 ... 𝑛 ) )
90 fzss2 ( 𝑛 ∈ ( ℤ𝑗 ) → ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... 𝑛 ) )
91 90 ad2antll ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... 𝑛 ) )
92 ssequn1 ( ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... 𝑛 ) ↔ ( ( 𝑀 ... 𝑗 ) ∪ ( 𝑀 ... 𝑛 ) ) = ( 𝑀 ... 𝑛 ) )
93 91 92 sylib ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( ( 𝑀 ... 𝑗 ) ∪ ( 𝑀 ... 𝑛 ) ) = ( 𝑀 ... 𝑛 ) )
94 89 93 eqtr2id ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( 𝑀 ... 𝑛 ) = ( ( 𝑀 ... 𝑗 ) ∪ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) )
95 88 94 63 71 fsumsplit ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺𝑘 ) = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺𝑘 ) + Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺𝑘 ) ) )
96 85 86 95 mvrladdd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺𝑘 ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺𝑘 ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺𝑘 ) )
97 83 96 eqtr3d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺𝑘 ) )
98 97 fveq2d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺𝑘 ) ) )
99 70 adantl ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘𝑍 )
100 99 25 syl ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺𝑘 ) ) )
101 abscl ( ( 𝐺𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐺𝑘 ) ) ∈ ℝ )
102 101 recnd ( ( 𝐺𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐺𝑘 ) ) ∈ ℂ )
103 71 102 syl ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( abs ‘ ( 𝐺𝑘 ) ) ∈ ℂ )
104 100 75 103 fsumser ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺𝑘 ) ) = ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) )
105 80 adantl ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑘𝑍 )
106 105 25 syl ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺𝑘 ) ) )
107 81 102 syl ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( abs ‘ ( 𝐺𝑘 ) ) ∈ ℂ )
108 106 78 107 fsumser ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺𝑘 ) ) = ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) )
109 104 108 oveq12d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺𝑘 ) ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺𝑘 ) ) ) = ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) )
110 84 107 fsumcl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺𝑘 ) ) ∈ ℂ )
111 72 102 syl ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) → ( abs ‘ ( 𝐺𝑘 ) ) ∈ ℂ )
112 66 111 fsumcl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺𝑘 ) ) ∈ ℂ )
113 88 94 63 103 fsumsplit ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺𝑘 ) ) = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺𝑘 ) ) + Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺𝑘 ) ) ) )
114 110 112 113 mvrladdd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺𝑘 ) ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺𝑘 ) ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺𝑘 ) ) )
115 109 114 eqtr3d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺𝑘 ) ) )
116 73 98 115 3brtr4d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ≤ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) )
117 56 61 55 62 116 letrd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → 0 ≤ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) )
118 55 117 absidd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ) = ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) )
119 118 breq1d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 ↔ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 ) )
120 rpre ( 𝑥 ∈ ℝ+𝑥 ∈ ℝ )
121 120 ad2antlr ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → 𝑥 ∈ ℝ )
122 lelttr ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ∈ ℝ ∧ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ≤ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ∧ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) )
123 61 55 121 122 syl3anc ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ≤ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ∧ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) )
124 116 123 mpand ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) )
125 119 124 sylbid ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) )
126 125 anassrs ( ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ 𝑗𝑍 ) ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) )
127 126 ralimdva ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ 𝑗𝑍 ) → ( ∀ 𝑛 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑛 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) )
128 127 reximdva ( ( 𝜑𝑥 ∈ ℝ+ ) → ( ∃ 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ∃ 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) )
129 128 ralimdva ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚𝑍 ↦ ( abs ‘ ( 𝐺𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) )
130 47 129 mpd ( 𝜑 → ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 )
131 seqex seq 𝑀 ( + , 𝐺 ) ∈ V
132 131 a1i ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ V )
133 1 12 130 132 caucvg ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ )